Reports

 
report Precision Medicine

«Bâle accélère l’engouement pour la blockchain dans le secteur de la santé»

03.12.2018

Marco Cuomo et Daniel Fritz, de Novartis, se sont intéressés à la technologie de la blockchain il y a deux ans. Ils se fixent aujourd’hui un objectif ambitieux: Ils se sont associés à d’autres compagnies pharmaceutiques pour créer, dans le cadre de l’initiative pour les médicaments innovants (Innovative Medicines Initiative), le programme «Blockchain Enabled Healthcare», dont le lancement est prévu en 2019. Présenté lors du Blockchain Leadership Summit de Bâle, la plus importante conférence suisse dans ce domaine, le programme vise à définir le mode de mise en œuvre de la blockchain dans le secteur de la santé.

BaselArea.swiss: Vous travaillez tous les deux pour Novartis, une société réputée pour ses produits pharmaceutiques plus que dans le domaine technologique. Comment vous êtes-vous intéressés aux opportunités que représente la blockchain?

Marco Cuomo: Nous étions curieux et nous voulions déterminer quels problèmes cette technologie pouvait nous aider à résoudre. Une poignée d’intéressés se sont réunis de manière informelle et nous avons constitué un groupe qui est allé à l’essentiel. Nous avons commencé il y a deux ans.

Qu’avez-vous découvert?

Marco Cuomo: Dans un premier temps, nous avons identifié plusieurs utilisations, afin d’en savoir plus. La chaîne logistique est alors apparue dans notre radar, la blockchain pouvant s’appliquer au suivi et à la traçabilité. Nous avons fait intervenir Dan, notre architecte en technologie de la chaîne logistique, afin qu’il conçoive, à partir de robots LEGO, un modèle allant du fabricant aux pharmacies...

Daniel Fritz: …dans lequel nous avons intégré des capteurs connectés qui mesurent la température et l’hygrométrie, ainsi qu’un contrôle des produits contrefaits. Nous avons constaté la puissance de la blockchain et les opportunités qu’elle offre.

Marco Cuomo: Notre modèle en LEGO a fortement contribué à faire passer notre point de vue, tant en interne qu’à l’externe. Nous avons rapidement réalisé que d’autres entreprises pharmaceutiques devaient se poser les mêmes questions. Nous les avons donc conviées à nous rejoindre.

Pourquoi ne pas avoir développé un projet individuellement?

Marco Cuomo: Il est bien sûr possible d’avoir, par exemple, sa propre crypto-monnaie, mais après? Pour l’échanger, vous avez besoin d’autres utilisateurs. Et la blockchain n’est pas une simple technologie que vous découvrez, déployez et exploitez. Son principal attrait est de transférer une chose de valeur d’un intervenant à l’autre. Dans la chaîne logistique des produits pharmaceutiques, il s’agit du fabricant, du centre de distribution, du grossiste, des pharmacies, des médecins et des hôpitaux. C’est là que la blockchain prend tout son sens. 

Comment cela?

Marco Cuomo: Elle permet de ne pas avoir à modifier son système de gestion des approvisionnements. Vous créez au contraire une sorte d’espace commun. Vous n’avez pas besoin d’intermédiaire. Nous comparons souvent la blockchain à un sport d’équipe, car tous les intervenants respectent les mêmes règles.

Qu’apporte-t-elle dans le secteur des sciences de la vie?

Daniel Fritz: Lorsque nous présentons et expliquons la blockchain, nous ne nous contentons pas des grands principes. Nous envisageons la solution que nous pourrions concevoir pour tenir compte du cadre réglementaire. Certains pensent même pouvoir aller au-delà et révéler une valeur commerciale. Je pense que la plupart des gens peuvent facilement comprendre les nombreux avantages de la blockchain par rapport aux technologies existantes.

Marco Cuomo: Elle apporte de la performance grâce aux économies d’argent et de temps et au surcroît de sécurité qu’elle génère. Les registres électroniques apparaissent clairement dans la blockchain. En cas de rupture de la chaîne du froid, chacun voit immédiatement ce qui se passe. Aujourd’hui, il faut attendre l’arrivée du produit à destination pour constater les dégâts et lancer le processus de renvoi. Grâce à la blockchain, le produit défectueux n’a même pas à quitter le site du fabricant.

Daniel Fritz: Il en va de même avec d’autres chaînes logistiques. Les gens veulent acheter des aliments biologiques, mais comment être certain de leur qualité? La blockchain nous permet de garantir la provenance d’un produit et de limiter, voire d’éliminer les contrefaçons dans la chaîne logistique, ce qui est bénéfique pour les professionnels et pour les patients.

Marco Cuomo: En parlant des patients, leur permettre de contrôler leurs données est l’objectif absolu. Aujourd’hui, les données se trouvent dans différents silos, et sont détenues par les hôpitaux ou les médecins. La blockchain permettrait selon nous un décloisonnement autorisant les patients à décider qui a accès à leurs données.

Voyez-vous d’autres applications dans le domaine de la santé?

Marco Cuomo: Notre CEO, M. Vas Narasimhan, aspire à créer une médecine exclusivement basée sur des données concrètes. La blockchain contribue à suivre et à tracer les données, afin d’en garantir l’origine. Les marchés de données permettent aussi de proposer vos données aux sociétés pharmaceutiques et aux chercheurs. Là encore, la blockchain peut aider. Il faut normalement du temps pour établir une relation de confiance aboutissant à l’échange de données précieuses et sensibles, ce dont la blockchain dispense.
Novartis espère pouvoir utiliser ces données pour créer la médecine du futur. Nous étudions aussi la gestion de la responsabilité civile. Comment pouvons-nous nous assurer que nos fournisseurs respectent le droit du travail et les règles de sécurité? Pourquoi devrions-nous effectuer le même audit dix fois par an au lieu d’une seule? Pourquoi ces évaluations ne relèvent-elles pas du fournisseur, si nous avons la certitude qu’il ne les manipule pas?

Lorsque vous avez commencé, il y a deux ans, vous formiez un petit groupe. Où en êtes-vous maintenant?

Marco Cuomo: Nous nous sommes rendu compte que nous devons définir certaines normes pour jeter les bases infrastructurelles de la blockchain dans le secteur de la santé. Nous avons donc soumis le projet «Blockchain enabled healthcare» à l’Innovative Medicine Initiative, dans laquelle Novartis est très engagée, avec plus de 100 projets. Nous avons convaincu huit autres sociétés de nous rejoindre, à savoir J&J, Bayer, Sanofi, AstraZeneca, UCB, Pfizer, Novo Nordisk et AbbVie.
Les fonds proviennent pour moitié du secteur, pour moitié de l’UE, pour un total de 18 millions d’euros pour trois ans. Les candidatures pour collaborer au consortium, qui devraient concerner des hôpitaux, laboratoires, patients, PME et universités, ont pris fin en octobre. Nous élaborerons ensemble un projet qui commencera en fin d’année prochaine.

Quels sont les atouts de la blockchain dans le domaine de la santé?

Marco Cuomo: Le principal objectif est de définir des normes pour créer un organe de gouvernance qui survivra au projet. A l’instar du World Wide Web Consortium (W3C), qui définit les normes techniques du Web, nous aspirons à faire de même pour la blockchain appliquée à la santé. Prenez l’Internet, il a fallu définir certaines normes sur lesquelles tout le monde pouvait s’appuyer. Nous espérons qu’il en ira de même pour nous.
Imaginez que Novartis déploie sa propre la blockchain et doive convaincre des milliers de fournisseurs de l’utiliser. Si une autre société fait de même, il devient impossible pour les parties concernées de suivre le produit de bout en bout. Pourquoi les médecins devraient-ils utiliser notre système plutôt qu’un autre? Le patient ne se voit pas systématiquement prescrire des médicaments Novartis. Une norme est nécessaire.

A-t-il été facile de convaincre les autres sociétés de vous rejoindre?

Daniel Fritz: Certaines ont été immédiatement d’accord, d’autres ont eu besoin de comprendre plus précisément notre objectif. Nous avons eu beaucoup d’échanges très porteurs, puisqu’ils nous ont permis d’instaurer de la confiance et une collaboration au sein du consortium, ce qui est l’essence même de la blockchain.

En quoi la présence à Bâle a-t-elle facilité le processus?

Marco Cuomo: C’est là que tout a commencé, sous la houlette de Novartis. L’ensemble des entreprises et universitaires que nous avons approchés lors de la démarche initiale du programme travaillent en étroite collaboration avec nous. Nous bénéficions aussi du fait que notre CEO soutient fortement les initiatives numériques et que notre Chief Data Officer en perçoit tout le potentiel.

Daniel Fritz: L’engouement pour la blockchain s’accélère à Bâle, au sein de Novartis et dans le monde entier. Cette technologie sera profitable aux patients et au secteur, mais il reste beaucoup à faire pour le consortium et avec les partenaires publics.

À propos

Marco Cuomo est Manager of Applied Technology Innovation et Senior Digital Solutions Architect chez Novartis. Titulaire d’un Bachelor of Science in Business Administration, il a rejoint Novartis en 2005, au poste de Business Informatics Engineer.

Daniel Fritz est Supply Chain Domain Architect pour Novartis. Il a auparavant été officier du génie dans l’armée américaine puis responsable des matériaux. Il a étudié à l’académie militaire de West Point et obtenu un Master of Business Administration de l’Université de Duke.

report Life Sciences

CEO of Novartis pinning hopes on malaria drug

30.03.2020

report Life Sciences

The pharma centers of Basel and India are influencing each other

21.02.2020

report Invest in Basel region

Basler Pharmafirmen gehen bei Investitionen voran

15.07.2018

Basel - Die 24 Pharmakonzerne, die Mitglieder beim Verband Interpharma sind, haben im vergangenen Jahr 7 Milliarden Franken für Forschung und Entwicklung in der Schweiz ausgegeben. Dabei gehen Roche und Novartis voran.

Die 24 Interpharma-Konzerne haben 2017 weltweit insgesamt 96 Milliarden Franken für Forschung und Entwicklung ausgegeben. In die Schweiz flossen davon 7 Milliarden Franken. Damit übersteigen ihre Schweizer Forschungsinvestition den Umsatz, den sie in der Schweiz erzielen, um mehr als das Doppelte. Dies belegt laut dem Verband die grosse Bedeutung des Forschungsstandorts Schweiz und den Innovationsgedanken innerhalb der Firmen.

Insbesondere Firmen in der Schweiz wie Roche und Novartis haben viel für Forschung und Entwicklung am Standort Schweiz ausgegeben. Aber auch Firmen ohne Schweizer Hauptsitz wie Johnson & Johnson tätigten den Angaben zufolge grosse Investitionen. Zusätzlich zu den Investitionen in die Forschung haben die Unternehmen rund eine halbe Milliarde Franken für Anlagen wie technische Geräte, Maschinen, Gebäude- und Betriebsausstattung ausgegeben.

Interpharma betont in einer Medienmitteilung zur Studie auch die wichtige Rolle der Pharmabranche für die Schweizer Exportwirtschaft. Ausserdem hebt der Verband hervor, dass zwischen 2012 und 2016 aus der Schweiz über 86 Patente pro Million Erwerbstätige in der pharmazeutischen Forschung angemeldet wurden. Das sind doppelt so viele wie in Dänemark und fast fünfmal so viele wie in Deutschland.

In der Studie sind auch die Umsätze der untersuchten Firmen aufgeführt worden. Hinter Pfizer (47,4 Milliarden Dollar) folgt bereits Novartis (46,6 Milliarden Dollar). Roche (39,9 Milliarden Dollar) belegt hinter Johnson & Johnson und Sanofi den fünften Rang. ssp

report BaselArea.swiss

Novartis opens campus up for innovation

17.01.2020

report Life Sciences

Pharmaceutical location Basel contributes to prosperity

09.12.2019

report BaselArea.swiss

«Biotech et Digitization Day» avec le conseiller fédéral Johann Schneider-Ammann

15.05.2017

Comment la Suisse et la région de Bâle, peuvent-elles assumer son rôle de leadership dans les Life Sciences? Dans le cadre du ‚Biotech et Digitization Day’, le conseiller fédéral Johann Schneider-Ammann a visité la région de Bâle afin de discuter avec des représentants importants de la politique, de l’économie et de la recherche ainsi qu’avec des start-ups des tendances et défis actuels de la digitalisation.

L’importance des Life Sciences pour l’économie suisse est énorme. L’année passée, la part de cette industrie aux exportations suisses s’élevait à 45%. En plus, la plupart des nouvelles entreprises s’engagent dans le secteur de la santé. C’est pourquoi la Suisse est considérée comme pays leader pour les Life Sciences dont la région de Bâle est le moteur.

Dans ce contexte et dans le cadre du ‚Biotech et Digitization Day’, le conseiller fédéral Johann Schneider-Ammann, chef du Département fédéral de l’économie, de la formation et de la recherche, a visité aujourd’hui la région de Bâle sur invitation de BaselArea.swiss et digitalswitzerland. Il discutait, avec une délégation de haut rang de la politique, de l’économie et de la recherche ainsi qu’avec des start-ups des tendances et des défis actuels dans l’industrie Life Sciences. L’événement s’est déroulé chez Actelion Pharmaceuticals et dans le Switzerland Innovation Park Basel Area à Allschwil près de Bâle.

Le conseiller fédéral Johann Schneider-Ammann a souligné la grande importance de la région et du secteur des Life Sciences : «Les deux cantons de Bâle bénéficient d’une densité élevée d’entreprises innovantes et florissantes. Cela me remplit de fierté et d’optimisme. Les industries pharmaceutique et chimique sont considérées, à juste titre, comme promoteurs d’innovations.» Afin de continuer à réussir, la Suisse ne devrait cependant pas se reposer ; selon lui, l’économie et la politique, les sciences et la société devraient profiter du passage au digital.

L’événement a été organisé par BaselArea.swiss - l’organisation d’encouragement de l’innovation et de promotion économique commune aux trois cantons du Nord-Ouest de la Suisse: Bâle-Ville, Bâle-Campagne et le Jura – et digitalswitzerland qui est une initiative commune de l’économie, du secteur public et des sciences. Elle veut faire de la Suisse, au niveau international, un site leader dans l’innovation digitale.

Actuellement, le conseiller fédéral Schneider-Ammann rend visite à des régions leader de la Suisse afin de se familiariser avec les effets de la digitalisation sur les différents secteurs économiques et de parler de recettes prometteuses d’avenir.

Promotion de start-ups dans le domaine des biotechnologies

Les Life Sciences sont considérées comme industrie émergente qui présente un fort potentiel de croissance. Néanmoins, la compétition devient de plus en plus agressive: D’autres régions dans le monde investissent énormément dans la promotion des sites et attirent de grandes entreprises. Une des questions principales lors de l’événement d’aujourd’hui était donc : Comment la Suisse et la région de Bâle, peuvent-elles assumer son rôle de leadership dans la compétition internationale?

La Suisse possède, en relation avec la grande importance économique des Life Sciences et en comparaison avec d’autres sites leaders dans le monde, relativement peu d’entreprises start-up dans le ce domaine. BaseLaunch, le nouvel accélérateur pour des start-ups dans le secteur de la santé, lancée par BaselArea.swiss en collaboration avec l’accélérateur Kickstart de digitalswitzerland, représente un premier pas an avant. Toutefois, il manque du capital de démarrage pour la phase initiale du développement d’une entreprise et notamment un accès à du capital important dont une start-up bien établie aurait besoin pour son expansion.

Domenico Scala, président de BaselArea.swiss et membre du Steering Committee de digitalswitzerland dit: «Nous devons investir dans notre force. C’est pourquoi nous avons besoin d’initiatives comme du Zukunftsfonds Schweiz qui devra faciliter aux investisseurs institutionnels de soutenir de jeunes entreprises innovantes.»

L’importance d’un paysage novateur de start-ups pour les Life Sciences en Suisse était ensuite également au centre de la discussion de la table ronde, présidée par le conseiller fédéral Johann Schneider-Ammann ensemble avec Severin Schwan, CEO du Groupe Roche, Jean-Paul Clozel, CEO d’Actelion Pharmaceuticals et Andrea Schenker-Wicki, recteur de l’Université de Bâle.

Digitalisation comme moteur de l’innovation

Le deuxième sujet du ‘Biotech et Digitization Day’ était la digitalisation dans les Life Sciences. Celle-ci est – selon Thomas Weber, conseiller d’état du canton de Bâle-Campagne – un moteur important pour l’innovation dans tout le secteur, voire déterminante pour le renforcement du site suisse de la recherche.

Dans son discours, le conseiller fédéral Johann Schneider-Ammann s’est concentré sur trois aspects: Premièrement, sur la création d’une nouvelle et courageuse culture de pionnier qui encourage l’esprit d’entreprise et qui récompense ceux qui osent essayer quelque chose. Deuxièmement, sur le fait qu’un fonds pour start-ups, initié et financé par le secteur privé, leur donnerait plus d’élan. Et troisièmement, sur le rôle de l’état qui rend possible cette activité tout en créant des espaces de liberté au lieu de dresser des interdictions et des obstacles.

La discussion ouverte entre les représentants de la recherche, de l’économie et les entrepreneurs a démontré clairement l’avis commun que la digitalisation changera les Life Sciences. Tous étaient d’accords sur le fait que la Suisse possède les meilleures conditions pour assumer un rôle de moteur dans ce processus de changement: des entreprises pharmaceutiques puissantes et globales, des universités, reconnues dans tout le monde, ainsi qu’un système écologique innovant avec des start-ups dans les domaines de la santé et des Life Sciences qui s’orientent vers la digitalisation.

C’est tout cela que digitalswitzerland veut également promouvoir. Selon Nicolas Bürer, CEO de digitalswitzerland, le secteur de la santé et les Life Sciences sont les industries clés pour faire de la Suisse un pays leader dans la digitalisation innovante. DayOne, la plateforme innovante pour la médecine de précision apporte une autre contribution importante à ce but. Lancée par BaselArea.swiss en étroite collaboration avec le canton de Bâle-Ville, elle réunit régulièrement une communauté croissante de plus de 500 experts et innovateurs pour échanger des idées et promouvoir des projets.

report Life Sciences

BeiGene wins Scrip Award

06.12.2019

report Life Sciences

Novartis on the cusp of taking over The Medicines Company

25.11.2019

report BaselArea.swiss

BaseLaunch can take full advantage of the potential of Basel's life sciences ecosystem

15.03.2017

The new accelerator for healthcare ventures, BaseLaunch, wants to link the best start-ups to the Basel region – and in doing so, provide impulses for major players. The project will consistently focus on quality and the concentrated know-how in the region, says Managing Director Alethia de Léon.

Financial support through BaseLaunch can be as high as CHF 10’000 per project. Startups accepted for the second phase will receive grants up to CHF 250’000. Other regions have tens of millions at their disposal. Are you even competitive?

Highly generous programmes in the EU and around the world have shown that it is not enough to distribute a lot of money with open hands. Rather, we have to make sure that the investments go to the most promising projects, namely those with a suitable team likely to effect a successful development from an idea to the market. In short: quality – and not quantity – has topmost priority for BaseLaunch.

What makes BaseLaunch unique?

BaseLaunch focuses on the entrepreneurs. Startups accepted for the programme will receive non-repayable funding, instead of equity financing that has to be repaid. Additionally, Basel is a life sciences ecosystem with one of the highest densities of biopharmaceutical enterprises globally and has an incredible pool of talents and specialists. Our healthcare partners, Pfizer, Johnson & Johnson Innovation, and Novartis Venture Fund offer direct access to valuable industry knowledge and experience relevant to develop and boost transformative healthcare solutions. Together, this allows us to give market-relevant advice suited to the needs of every single start-up company.

What types of projects is BaseLaunch especially suitable for?

BaseLaunch is open to all projects in the healthcare field. Geographically, our focus is on Switzerland and Europe. Our laboratories in Switzerland Innovation Park Basel Area specialise on therapeutics, but innovative concepts in the diagnostic and medtech fields are also welcome to participate in the accelerator.

Operationally, the accelerator is managed by BaselArea.swiss but operates under a different name. Why such a setup?

BaseLaunch seeks to find the most innovative and promising healthcare start-ups, support them and embed them into the local healthcare ecosystem. This makes BaseLaunch an important part of the core activity of BaselArea.swiss. Due to the different financing and decision-making structures and in line with a focussed market presence and a particular target groups, it made sense to launch the project under a different name.

Is it then the role of the state to invest in start-ups?

No public funds are invested in the projects. The cantons are financing the operational running of BaseLaunch. But what goes directly into the start-ups comes from the private sector. With BaseLaunch, BaselArea.swiss is thus providing the right framework conditions as a neutral partner of industry fostering the emergence of new companies with suitable programmes. And don’t forget that other places are very much on the offensive with public resources. It’s important not to fall behind. We have to remain in the fiercely competitive bid to be an attractive location – without, however, distorting our liberal economic order.

Why do we need more start-ups?

Start-ups are needed first and foremost to create added value from knowledge. If we invest billions into academic research, this also needs corresponding structures to make innovations out of inventions. It’s been shown that start-ups are taking on a more and more decisive role in this respect. In addition, start-ups have the potential to grow rapidly when successful and create a great number of high-quality jobs. Actelion, which began as a start-up, is the best example of this. While BaseLaunch succeeds in working with the best start-up projects, this also generates impulses for established companies and the ecosystem as a whole. BaseLaunch thus contributes toward raising the region’s attractiveness as Europe’s leading life sciences hub.

Is the Basel region even interesting for start-ups? Isn’t the cost of living likely to frighten away entrepreneurs?

Silicon Valley, London or Boston is not more affordable. The unique advantage of Basel’s life sciences ecosystem – its concentration of talent, pharmaceutical decision-makers and capital, which are unrivalled in Europe – ultimately tip the balance in our favour in the eyes of company founders. We have seen that the Basel region scores well in these critical areas – which are “must haves” especially for young companies – that, all things considered, the overall package is more than enough. This can be seen in the steady increase in companies being founded from outside the region in recent years.

For more information about the project, please visit www.baselaunch.ch

 

About Alethia de Léon

Born in Mexico, Alethia de Léon studied at Massachusetts Institute of Technology and Harvard Business School. After working in healthcare investment and product development, she was Global Head of Search and Evaluation, Business Development and Licensing for the Neuroscience Business at Novartis until 2015. In addition to managing BaseLaunch, Alethia de Léon is CEO and founder of the start-up Senes Science GmbH.

 

report Life Sciences

Novartis works with Microsoft on artificial intelligence

02.10.2019

report BaselArea.swiss

BaseLaunch supports Switzerland as an innovation location

27.08.2019

report ICT

Dr App – Digital transformation in the life sciences

30.11.2016

The future belongs to data-driven forms of therapy. The Basel region is taking up this challenge and investing in so-called precision medicine.
An article by Fabian Streiff* and Thomas Brenzikofer, which first appeared on Friday, 14 October 2016, in the NZZ supplement on the Swiss Innovation Forum.

So now the life sciences as well: Google, Apple and other technology giants have discovered the healthcare market and are bringing not only their IT expertise to the sector, but also many billions of dollars in venture capital. Completely new, data-driven, personalized forms of therapy – in short: precision medicine – promise to turn the healthcare sector on its head. And where there is change, there is a lot to be gained. At least from the investor’s point of view.

From the Big Pharma perspective, things look rather different. There is quite a lot at stake for this industry. According to Frank Kumli from Ernst & Young, the entry hurdles have been relatively high until now: “We operate in a highly regulated market, where it takes longer for innovations to be accepted and become established.” But Kumli, too, is convinced that the direction of travel has been set and digitalization is forging ahead. But he sees more opportunities than risks: Switzerland - and Basel in particular - is outstandingly well-positioned to play a leading role here. With the University of Basel, the Department of Biosystems Science and Engineering ETH, the University of Applied Sciences Northwest Switzerland, the FMI and the University Hospital Basel, the region offers enormous strength in research. It also covers the entire value chain, from basic research, applied research and development, production, marketing and distribution to regulatory affairs and corresponding IT expertise. The most important drivers of digital transformation towards precision medicine include digital tools that allow real-time monitoring of patients – so-called feedback loops. The combination of such data with information from clinical trials and genetic analysis is the key to new biomedical insights and hence to innovations.

Standardized nationwide data organization
In rather the same way that the invention of the microscope in the 16th century paved the way to modern medicine, so data and algorithms today provide the basis for offering the potential for much more precise and cheaper medical solutions and treatments for patients in the future. At present, however, the crux of the problem is that the data are scattered over various locations in different formats and mostly in closed systems. This is where the project led by Professor Torsten Schwede at the Swiss Institute of Bioinformatics (SIB) comes into play.

As part of the national initiative entitled Swiss Personalized Health Network, a standardized nationwide data organization is to be set up between university hospitals and universities under centralized management at the Stücki Science Park Basel. Canton Basel-Stadt has already approved start-up funding for the project. The standardization of data structures, semantics and formats for data sharing is likely to substantially enhance the quality and attractiveness of clinical research in Switzerland – both at universities and in industry. There is no lack of interest in conducting research and developing new business ideas on the basis of such clinical data. This was apparent on the occasion of Day One, a workshop event supported by BaselArea.swiss for the promotion of innovation and economic development and organized by the Precision Medicine Group Basel Area during Basel Life Sciences Week.

More than 100 experts attended the event to address future business models. Altogether 14 project and business ideas were considered in greater depth. These ranged from the automation of imaging-based diagnosis through the development of sensors in wearables to smartphone apps for better involvement of patients in the treatment process.

Big Pharma is also engaged
“The diversity of project ideas was astonishing and shows that Switzerland can be a fertile breeding ground for the next innovation step in biomedicine,” Michael Rebhan from Novartis and founding member of the Precision Medicine Group Basel Area says with complete conviction. The precision medicine initiative now aims to build on this: “Despite the innovative strength that we see in the various disciplines, precision medicine overall is making only slow progress. The advances that have been made are still insufficient on the whole, which is why we need to work more closely together and integrate our efforts. A platform is therefore required where experts from different disciplines can get together,” says Peter Groenen from Actelion, likewise a member of Precision Medicine Group Basel.

There is also great interest among industry representatives in an Open Innovation Hub with a Precision Medicine Lab as an integral component. The idea is that it will enable the projects of stakeholders to be driven forward in an open and collaborative environment. In addition, the hub should attract talents and project ideas from outside the Basel region. The novel innovation ecosystem around precision medicine is still in its infancy. In a pilot phase, the functions and dimensions of the precision medicine hub will be specified more precisely based on initial concrete cases, so that the right partners can then be identified for establishing the entire hub.

Leading the digital transformation
The most promising projects will finally be admitted to an accelerator programme, where they will be further expedited and can mature into a company within the existing innovation infrastructures, such as the Basel Incubator, Technologiepark Basel or Switzerland Innovation Park Basel Area.

Conclusion: the Basel region creates the conditions for playing a leading role in helping to shape digital transformation in the life sciences sector and hence further expanding this important industrial sector for Switzerland and preserving the attractiveness of the region for new companies seeking a location to set up business.

* Dr Fabian Streiff is Head of Economic Development with Canton Basel-Stadt

report Life Sciences

Basel-based pharma groups successfully combating cancer

05.08.2019

report Life Sciences

Novartis enjoys success

18.07.2019

report Medtech

“This is the century of biology and biology for medicine”

05.10.2016

Andreas Manz is considered one of the pioneers in the field of microfluidics and at present is a researcher at the Korea Institute of Science and Technology in Saarbrücken (KIST Europe) and professor at Saarland University.

In our interview, the successful scientist explains the motivation that drives him to research and what it means to receive a lifetime achievement award from the European Patent Office.

You are known as a pioneer of microfluidics. How did you come to start researching in a completely new field?
Andreas Manz*:
Even as a child I was really fascinated by small things. They were mostly stones, insects or bugs that I took home with me. This interest in small things stayed with me, and eventually I went on to study chemistry at the ETH Zurich. In my PhD thesis I examined the natural law of molecular diffusion. If you entrap two molecules in a very small volume – rather like two birds in a cage – they cannot get away and become faster. I was instantly fascinated by this acceleration. My professor Willy Simon, an expert in chemical sensors and chromatography, talked in his lectures about processes can also get very fast when they are reduced in size. And that instantly fascinated me.

But so far you have been talking about pure chemistry – when did you get the idea of using chips?
I started working for a company in Japan in 1987. That’s where I first came into contact with chip technology. I was part of the research department myself, but I kept seeing colleagues disappearing into cleanrooms and coming back with tiny chips. That inspired me and got me wondering whether you could not also pack chemistry onto these chips instead of electronics. After all, even the inner workings of the tiniest insect involves the transportation of fluid, so it should also work on a small chip. At Hitachi I was eventually able to get my first microfluidic chip produced for test purposes.

From Japan your journey then took you to Ciba-Geigy in Basel. What prompted that move?
Michael Widmer was then Head of Analytical Chemistry Research at Ciba-Geigy in Basel. This brilliant fascinated me from the word go: he had the vision that you should also integrate crazy things in research and not only look for short-term financial success. Industry should allow itself to invest in quality and also develop or promote new methods in the research activities of a company if it could be of benefit to the company. So Professor Widmer brought me to Basel, where it was my mission to pack “the whole of chemistry”, as he put it, on a single chip. While Michael Widmer did not yet know what to expect, he had a feeling that it could be worthwhile.

How did you go about it?
At that time, chips were very new and not entirely appropriate for the world of pharmaceuticals. Ciba-Geigy, too, was not enthusiastic about the new application initially. There was no great interest in making changes to existing technologies and processes that worked. But in my research I was able to try out what might be possible. I found, for example, that electrophoresis – a method for separating molecules – could work. It would be relatively easy to miniaturize this method and test it to see whether it also speeds up the process. And the results were very good: We were able to show that a tenfold miniaturization of electrophoresis makes the process 100 times faster without compromising the quality of the information. This realization was really useful for clinical diagnosis and the search for effective molecules in drug discovery. At the same time, we were also testing different types of chips that we sourced from a wide variety of producers.

When did the time come to go public with the new technology?
At the ILMAC in Basel in 1996, Michael Widmer organized a conference in the field of microfluidics – which proved to be a bombshell. We had planned for this effect to a large extent, because in the run-up to the meeting we had already invited selective researchers and shown them our work. This hyped things up a little, and at the conference we were eventually able to mobilize researchers from Canada, the USA, the Netherlands, Japan and other countries to present the new technology of microfluidics.

Although the attention was there, Ciba-Geigy nevertheless later brought research in this field to an end. Why was that?
Basically we lacked lobby groups within the company and a concrete link to a product. Our research was somewhat too technical and far ahead of its time, and within Ciba-Geigy they were simply not yet able to assess the potential of the technology. Added to which, we had not given any concrete consideration to applications; we were more interested in the technology and experiments than in its commercial use. When a large picture of me then appeared in a magazine with a report on microfluidics, and the journal pointed out on its own initiative that Ciba-Geigy was not adequately implementing the technology, the research was stopped. I was quite fortunate under the circumstances: Since the company had terminated the project, I found that – despite a non-compete clause – I was able to follow the call to Imperial College in London within a short time, where I could continue research in microfluidics with students. In addition, I joined a company in Silicon Valley as consultant.

Is it not typical that a large company fails to transform a pearl in its portfolio into a new era?
You should not see it so negatively, because microfluidics was a pearl not for the pharmaceutical industry, but rather for environmental analysis, research or clinical diagnosis. The pharmaceutical industry dances to a different tune. It prefers to buy in the finished microscope at a higher price than get it constructed itself for relatively little money. Michael Widmer and his team in research and analytical chemistry at Ciba-Geigy developed many things in a wide variety of fields – with which were far ahead of their time.

Microfluidics is an established field today. What are the driving forces now?
To my mind there are two driving forces: firstly the application and the users and secondly academic curiosity as regards the technology and also training. The first of these is the stronger driving force: there are cases in which the application of a microfluidic solution is not absolutely necessary to do justice to the application. Take “point of care”, for example. The objective is to analyse a patient directly at the place where he or she is treated – for example, in intensive care. The patient is evaluated, blood and respiratory values are analysed, and it is possible to assess immediately whether the measures taken are having an effect in the patient. Another possibility is to integrate the widest variety of analytical options in smartphones – similar to the Tricoder in Star Trek. I’m pretty sure that something like that is feasible. But at the moment the hottest topic in the commercial sector is clinical diagnostics. This came as a surprise to me, because you cannot reuse a chip that has come into contact with a patient’s blood. You need a lot of consumable material, which is also reflected in the price. But perhaps new funding models can be found in which, for example, the device is provided, but the consumable material – i.e. the chips – are paid for separately, rather like a razor and razor blades.

Where do you see opportunities for Switzerland in this field?
The education of qualified people is important. Here the ETH and EPFL play a particularly important role for Switzerland, because they attract students from all over the world. They hopefully leave Switzerland with good memories and could possibly campaign later for the commercialization of technologies. That could be a huge opportunity. Of course there are also generous people within Switzerland, but there is a tendency here to economize and think twice before deciding whether and, if so, where to invest one’s money. It’s a question of mentality and not necessarily typically Swiss. It’s also not a bad thing, because in precision mechanics, for example, reliability and precision are essential – and this technology fits with our mentality. “Quick and dirty” works better in Silicon Valley and Korea – but the products then often fail to ensure up to the quality standards here. As a high-price island, Switzerland offers little, opportunity for cheap production, which is why the focus is on education and existing technologies. This too is very important and has a good future.

Will microfluidics one day become as big as microelectronics is today?
I don’t think so, because it is limited to chemical and cytobiological applications and is also not as flexible as microelectronics. At most, I see the new technology being used on existing equipment or processes.

But most of the systems on the market today are very much closed, so it is difficult to integrate new technologies here.
Yes, but that’s only partly true, because existing devices also have to be upgraded. Take a mass spectrometer, for example. You can buy one of these, and there are certainly many companies that sell this equipment. But if ten companies offer something equivalent, you have to stand out from the mass. So if a “Lab on a Chip” is added on, then this mass spectrometer enjoys a clear advantage. While the company makes money from the sale of the equipment, it is the microfluidic chip that gives the incentive to buy – and there is certainly a lot of money to be made from this. You see, we are living in the century of biology and medicine and are only just beginning to takes cells from the body to regenerate them and then perhaps re-implanting them as a complete organ. When you see what has been achieved in physics and electrical engineering in the last century, and translate that into biology and medicine, then we have an awful lot ahead of us. Technology is needed to underpin these radical changes. SMEs in particular are very good at selling their products to research; that’s a niche. In most cases, small companies use old technology and modify it – such as a chip in a syringe that then analyses directly what the constituents of a fluid are when it is drawn up into the syringe. This opens up many opportunities.

You have also co-founded companies, but describe yourself mainly as a researcher. How do the two go together?
Actually I was never an entrepreneur, but always just a scientific advisor. I preferred to experience the academic world instead of becoming fully engaged in a company. Deep down, I’m an adventurer who comes to a company with wild ideas. Money is also never a priority for me; I always wanted to improve the quality of life or give something to humanity. It is curiosity that drives me. When I see a bug that flies, that drives me to find out how it works. There are ingenious sensors in the tiniest of creatures, and as long as we cannot replicate these as engineers, we still have work to do. This inspires me much more than quarterly sales revenue and profits.

But money is also an important driver for research.
Yes, it’s all about money, right down to university research. Research groups are commissioned by companies because of the profit they hope to gain. Even publicly funded research always has to show evidence of a commercial application. Curiosity or the goal of achieving something of ethical value is hardly a topic in the engineering sciences. Of course it’s important that our students can also enter industry; after all, most of the tax revenue comes from industry. But if I personally had the freedom to choose, then I would prefer to pursue work as a form of play – which can by all means result in something to be taken seriously. Take electrophoresis on a chip: That was also quite an absurd idea to begin with, and it led to something really exciting! A lot of my work therefore has a playful, non-serious aspect to it – for me that is exactly right. You see, I can produce a chip which deep inside it is as hot as the surface of the sun, but which you can nevertheless hold in your hand. It’s crazy, but it works, because only the electrons have a temperature of 20,000 Kelvin. The glass outside does not heat up very much as a result, and the chip does not melt. And suddenly you have plasma emission spectroscopy on a chip as the result of a crazy idea. I feel research calls for a certain sense of wit, and I often like to say that, with microfluidics research, we take big problems and make them so small that you can “no longer see them”.

You have covered so many areas of microfluidics yourself – are other researchers still able to surprise you with their work?
Admittedly, I am rather spoiled today by all the microfluidic examples that I have already seen. Sometimes I feel bored when I go to a microfluidics conference and see what “new” things have emerged – I somehow get the feeling I’ve seen it all before. The pioneering days, when there was also a degree of uncertainty at play, are probably definitely over. Today you can liken microfluidics to a workshop where you get the tools you need at any given time. This means of course that the know-how has also become more widespread: Initially I possessed perhaps a third of all knowledge about microfluidics worldwide; today it is much less. So I now enjoy casting my research net further afield.

You received a lifetime achievement award from the European Patent Office last year. What does this award mean to you?
You cannot plan for an award – at most you can perhaps hope for one. When you then get it, it brings a great sense of joy. The award process itself was also exciting: as with the Oscars, there were three nominees: a Dutchman who developed the coding standard for CD, DVD and Blu-ray discs, which is still used to this day, and a researcher from Latvia who is one of the most successful scientists and inventors in medical biochemistry with more than 900 patents and patent applications. Faced with this competition, I reckoned I did not have much chance of the award and was absolutely astonished when I was chosen. The jury explained that its decision was down to the snowball effect: citations almost always refer to my patents at the time with Ciba-Geigy.

Interview: Fabian Käser and Nadine Nikulski, BaselArea.swiss

*Andreas Manz is a researcher at the Korea Institute of Science and Technology in Saarbrücken (KIST Europe) and professor at the Saarland University. He is regarded today as one of the pioneers in microchip technology for chemical applications.

After positions in the research labs of Hitachi in Japan and at Ciba-Geigy in Basel, he took up a professorship at Imperial College in London, where he headed the Zeneca-SmithKline Beecham Centre for Analytical Chemistry. In the meantime he was also a scientific advisor for three companies in the field of chip laboratory technology, one of which he founded himself. In 2003, Manz moved to Germany and headed the Leibniz Institute of Analytical Sciences (ISAS) in Dortmund until 2008.

Around 40 patents can essentially be attributed to him, and he has published more than 250 scientific publications, which have been cited more than 20,000 times to date.

report Life Sciences

Basel home to two of the most valuable companies

12.07.2019

report Innovation

Basel is a hotspot for innovation

05.06.2019

report Life Sciences

Therapeutic gene editing is taking off – and Basel is right in the middle

28.01.2015

Very rarely can a scientist claim to have had a fundamental and game-changing impact in his field and beyond. But Jennifer Doudna from University of California, Berkeley, and Emmanuelle Charpentier, who was working at the University of Umeå in Sweden at the time, can claim just that. In mid-2012, when they published their discovery of an RNA-programmable tool (termed CRISPR for Clustered Regularly Interspaced Short Palindromic Repeats) which allowed DNA to be cleaved in a very targeted and extremely efficient manner, they created a stir, because this tool could potentially also be used for RNA-programmable genome editing. And only months later, this is exactly what George Church from Harvard and Feng Zhang from the Broad Institute of MIT and Harvard showed in two independent publications: CRISPR could be used to edit the genome of potentially any organism, from yeast to man, whether to introduce new mutations, to correct disease-causing mutations or to insert or remove whole sections of DNA in the genome, and all of this in no time at all. After this the biomedical community was jumping with excitement, and scientists were describing CRISPR as the “holy grail” of genetic engineering and a «jaw-dropping» breakthrough in the fight against genetic disease.

A new era in gene editing
It was not that genomes had not been editable until then. But for higher eukaryotes, such as mice, monkeys, dogs or also human cells, it was a slow, painstaking and expensive process that could potentially take months if not years. But with CRISPR it was possible for the first time to edit the genome very precisely and at unprecedented speed and very little cost. The research community quickly embraced CRISPR as a research tool to engineer custom transgenic lab animals in a matter of weeks—saving about a year's worth of work. This not only enables new model organisms to be established in a very short time for many hitherto hard to treat diseases, such as Alzheimer’s, multiple sclerosis, autism, certain forms of cancer, but also allows cell lines to be edited for drug screening or new approaches to be explored for treating HIV. It might also be possible to for example correct the chromosomal abnormality associated with Down syndrome early in a pregnancy, to reintroduce susceptibility to herbicides in resistant weeds, to bring back extinct animal species and very much more.

On the road to commercialization
From the outset, of course, it was clear that CRISPR would also attract a lot of interest from the biotech world, which is also where Basel enters into the story. So far, three therapeutic biotech companies have been formed around CRISPR, two of them having links to Basel. The first of these was Editas Medicine from Boston, which was launched in late 2013 with $43 million in venture capital from Flagship Ventures, Thirdrock Ventures, Polaris Partners and the Partners Innovation Fund. A few months later, the Basel office of Versant Ventures announced a Series A investment of $25 million to start up CRISPR Therapeutics with headquarters in Basel. And in late 2014, Atlas Ventures and Novartis announced the formation of Intellia Therapeutics (although it had already existed in stealth mode for almost two years) with a Series A investment round of $15 million.

And just recently Novartis also concluded the first biotech-pharma licensing deal in this area with Intelllia, for exclusive rights for ex vivo engineering of chimeric antigen receptor (CAR) T cells (another hot topic in biotech/pharma research these days) and the right to develop a number of targets for ex vivo editing of hematopoietic stem cells. Ex vivo applications, in which cells are extracted from patients and manipulated outside the patient’s body and then re-infused, will very likely be among the first treatments to be developed for Editas Medicine and CRISPR Therapeutics, as this can be addressed with the technology as it stands today. The companies expect clinical trials to begin in as little as three years.

Challenges ahead
One of the big challenges, however, will be to make CRISPR a technology to treat genetic diseases of any kind with a one-time fix that can «edit» out genetic abnormalities and cure disease at the genetic level, potentially in a single treatment, in vivo. But for this to happen, ways have to be figured out for safely and effectively delivering a gene-editing drug into the body, which is still a very big hill to climb.

And there is another issue: The patent situation is in a state of some confusion. The first patent issued went to the Broad Institute of Harvard and MIT and was licensed by Editas Medicine. However, after that patent was granted, Jenifer Doudna, originally one of the co-founders of Editas Medicine, broke off her relationship with the company, and licensed her intellectual property - in the form of her own pending patent - to Intellia Therapeutics. And to confuse the issue further, Emmanuelle Charpentier, who claims that «the fundamental discovery comes from my laboratory», licensed her own rights in the same patent application to CRISPR Therapeutics.

So there appears to be a lot of work for patent lawyers to sort out in the next few months. But despite all the legal wrangling, CRISPR will without doubt continue to transform biomedical research in a way very seldom seen before and be transformative in the way we treat genetic diseases.

More information
General
Youtube Video «Genome Editing with CRISPR-Cas9»
New York Times article «A Powerful New Way to Edit DNA»
The Independent article «The more we looked into the mystery of Crispr, the more interesting it seemed»

Companies
Editas Medecine
CRISPR Theraeputics
i-net article «$25 million in series A financing for Basel-based CRISPR Therapeutics»
Intellia Therapeutics
collaboration with Novartis:
FierceBiotech article «Novartis adopts a CRISPR-Cas9 partner and jumps into the hot new R&D field»
FierceBiotech article «Novartis joins Atlas in launching a CRISPR Cas biotech with a $15M bankroll»
Xconomy article «CART + CRISPR = 1st-Of-Its-Kind Biotech Deal From Novartis, Intellia»

Patents
MIT Technology Review article «Who Owns the Biggest Biotech Discovery of the Century?»
Independent article «Scientific split - the human genome breakthrough dividing former colleagues»
Fiercebiotech article «A biotech war is brewing over control of the revolutionary CRISPR-Cas9 tech»

report Life Sciences

Novartis schaut optimistisch in die Zukunft

09.04.2019

report Life Sciences

Novartis schaut optimistisch in die Zukunft

05.11.2018

Cookies

Le site BaselArea.swiss utilise des cookies pour améliorer votre navigation. Pour continuer à surfer, veuillez accepter l'utilisation des cookies. 

Ok