Innovation Report

Ralf Dümpelmann

Ralf Dümpelmann

Dr. | Senior Project Manager Micro, Nano & Materials


Tel. +41 61 295 50 20

ralf.notexisting@nodomain.comduempelmann@baselarea.notexisting@nodomain.comswiss
report BaselArea.swiss
Thomas Ward ist Direktor von NCCR Molecular Systems Engineering.

Thomas Ward ist Direktor von NCCR Molecular Systems Engineering.

08.06.2017

Molekulare Fliessbänder, um den Körper zu heilen

Stellen Sie sich vor, bestimmte Formen von Blindheit könnten geheilt werden. Oder stellen Sie sich vor, dass der Körper selbst Arzneimittel erzeugen könnte, um Krankheiten zu heilen. Beides könnte das Ergebnis des Sonderforschungsbereichs Entwicklung molekularer Systeme sein, des National Centre of Competence in Research Molecular Systems Engineering (NCCR MSE). Langfristig soll es molekulare Systeme und molekulare Fabriken schaffen, die hochwertige chemische Verbindungen produzieren. Ausserdem soll es Zellsysteme für neue Anwendungen in der medizinischen Diagnostik, der Therapie und der Behandlung entwickeln. NCCR MSE-Direktor Thomas Ward hat die Ziele hoch gesteckt: Er will Basel zum Koordinationszentrum des nächsten Europäischen Flaggschiffprojekts machen. Dabei geht es um eine Milliarde Euro.

Interview: Ralf Dümpelmann

Thomas Ward, Sie sind der Direktor des NCCR MSE. Wie kam es dazu?

Thomas Ward: Während meiner Arbeit an der Universität Neuenburg interessierten wir uns für künstliche Metalloenzyme. Wir brachten Ruthenium, von dem es in der Natur nicht viel gibt, in Proteine ein. Das Ergebnis war ein künstliches Metalloenzym. Aus Neugier haben wir damit weitergemacht und uns in der Forschungsgruppe stärker biologischen Fragen zugewandt. Schliesslich wollte ich mehr mit Molekularbiologen zusammenarbeiten. Das war einer der Hauptgründe, warum ich nach Basel gegangen bin. Als ich vor neun Jahren hier ankam, war das ETH Department of Biosystems Science and Engineering (D-BSSE) gerade nach Basel gezogen. Das veranlasste Professor Wolfgang Meier, damals Leiter des Departements Chemie unserer Universität, dazu, produktive Gespräche mit dem D-BSSE aufzunehmen. Am Ende bemühten sich er und Daniel Müller, der Co-Direktor des D-BSSE, um einen nationalen Sonderforschungsbereich (NCCR), der schliesslich vom Schweizerischen Nationalfonds (SNF) finanziert wurde.

Was war das Ziel des NCCR?

Wolfgang Meier und Daniel Müller sahen die Gelegenheit, eine Zusammenarbeit zwischen Biologen und Chemikern aufzubauen. Die Biologen waren stark auf die Chemie angewiesen, und die Chemiker konnten die nötigen chemischen Bausteine liefern, mit denen einige der grössten Herausforderungen der Biologie gelöst werden können. Das ist wissenschaftlich gesehen eine einzigartige Kombination. Aus meiner Sicht spiegelt sich das auch im Aspekt unseres Namens: molecular systems engineering – das System ist zentral.

Wollen Sie mit Hilfe der Chemie künstliche biologische Systeme bauen?

Am Ende unserer Forschungsarbeit wollen wir die Eigenschaften und die Komplexität lebender Systeme reproduzieren. Das kann man auf zwei Wegen erreichen. Die Chemiker nehmen einen Raum, bringen Objekte hinein und schauen zu, was dabei geschieht. Das ist der Ansatz von unten nach oben. In der Biologe wiederum nimmt man ein komplexes System und schliesst eine Komponente nach der anderen aus. Dabei konzentrieren sich Biologen darauf, das System zu berechnen. Und das tun sie gut. Sie können die Dinge kontrollieren, ohne dass sie die Einzelheiten dieser Systeme auf molekularer Ebene verstehen. Diese beiden Ansätze berühren sich an einer bestimmten Stelle – und da kommt unser NCCR ins Spiel.

Wie könnte das potenzielle Endergebnis aussehen? Ein kleiner Golem?

Wir werden ganz sicher nicht versuchen, bestimmte Bestandteile des Lebens zu imitieren. Wir konzentrieren uns stattdessen auf eine künstliche Organelle, etwas, das man in lebende Systeme einfügen kann. Das würde in lebenden Systemen funktionieren, ohne selbst alle Eigenschaften eines lebenden Systems zu haben. Ich nenne solche Komponenten molekulare Prothesen. Sie sind wie künstliche Legobausteine, die in lebende Systeme passen. Auf diesem Weg sind wir schon ziemlich weit vorangekommen.

Wie ist die Arbeit des NCCR strukturiert?

Das Netzwerk arbeitet während zwölf Jahren, eingeteilt in drei Phasen. Rund 30 Gruppen sind mit dem NCCR verbunden, davon sind etwa 20 in Basel. Wenn jemand ausserhalb Basels Kompetenzen hat, die wir brauchen, können er oder sie in das Netzwerk integriert werden. Das können Leute am Paul Scherrer Institut sein oder an der Universität Bern. Wir kommen jetzt ans Ende der ersten vierjährigen Phase. Für uns als Chemiker ist der erste Schritt die Synthese und das Zusammenfügen von Molekülen zu Modulen, also die Verbindung von mehreren Molekülen. So synthetisieren zum Beispiel Sven Panke am D-BSSE und ich künstliche Enzyme. Daniel Müller am D-BSSE manipuliert auf der anderen Seite Porenproteine, die es erlauben, den Transport von Substanzen und Produkten in eine Zelle und wieder heraus zu kontrollieren. Das Ziel ist es, eine künstliche Organelle zu schaffen, die zwei oder drei Enzyme enthält und diese Prothese in eine Zelle einzufügen. Damit können wir den natürlichen Stoffwechsel einer Zelle mit einem künstlichen Stoffwechsel ergänzen, um neue Chemikalien zu produzieren. Am Ende der ersten Phase werden wir idealerweise das Modulproblem gelöst haben. In der zweiten und dritten Phase können wir uns dann darauf konzentrieren, molekulare Fabriken und Zellsysteme zu schaffen.
Am Ende sollte eine solche chemische Fabrik etwas Nützliches produzieren können. Das Zellsystem sollte dazu genutzt werden können, eine Krankheit zu heilen. Um diese Ziele zu erreichen, braucht es ein molekulares Fliessband, ganz im Geiste dessen, was Henry Ford im frühen 20. Jahrhundert entwickelt hat, aber diesmal auf molekularer Ebene.

Können Sie auf diesem Fliessband bereits ein stabiles System erzeugen?

Ja. Die Frage ist nur, wie stabil und für wie lange. Wir haben Systeme, die in einer Zelle während zwei Wochen funktionieren. Ob das ausreicht, um eine Krankheit zu heilen, muss sich noch zeigen.

Welchen Nutzen kann Ihre Arbeit bringen?

Unser Ziel ist es, die Art und Weise zu ändern, in der die Biologie und die Chemie langfristig funktionieren. Das ist eine riskante Strategie, aber der potenzielle Nutzen ist riesig.

Worin könnte dieser Nutzen bestehen?

Sie führen ein molekulares System oder ein Zellsystem in den Körper ein und dieses System heilt eine Krankheit.

Wann wird das möglich sein?

Es gibt bereits zwei sehr fortgeschrittene Systeme, beide initiiert und finanziert von unserem NCCR. Botond Roska vom Friedrich Miescher Institut für biomedizinische Forschung hat ein System entwickelt, dass in das Auge injiziert wird und die Sehkraft wiederherstellt. Die klinischen Tests für dieses System beginnen im Winter 2017. Das System beruht auf Gentechnik, bei der DNA so injiziert wird, dass das Auge wieder selbst Pigmente erzeugt. Das zweite System soll Diabetes heilen. Dabei werden körpereigene Fettzellen so umprogrammiert, dass sie in der Lage sind, Insulin zu produzieren. Dann werden sie in den Körper injiziert und erlauben ihm so, autonom Insulin zu produzieren, wenn er es braucht.

Werden diese Ideen in Start-ups weiterentwickelt?

Ja. In den vergangenen drei Jahren sind bereits zwei Start-ups entstanden. Auch die Diabetesbehandlung ist ein ernsthafter Kandidat für ein Start-up. Der Nationalfonds legt Wert auf diese Dinge. Er will, dass wir unsere Forschung auch anwendungsfähig machen.

Sie organisieren Ende August die International Conference on Molecular Systems Engineering. Was ist das Hauptziel?

Es ist eine Herausforderung, eine solche Konferenz zu organisieren. Denn üblicherweise wollen die Teilnehmer zu den Spezialisten ihres Fachgebiets sprechen. Wir aber wollen unsere Herangehensweise auf eine Reihe von unterschiedlichen Gebieten anwenden. Wir werden herausragende Referenten haben. Aber wir müssen die Leute überzeugen, dass es sich lohnt, das Thema von einer breiteren Perspektive her anzuschauen. Die gute Nachricht ist, dass es ähnliche Projekte in Europa gibt, in den Niederlanden und in Deutschland. Wir werden eine Vorkonferenz durchführen, bei der Doktoranden dieser anderen Projekte ihre Erfahrungen und Ideen mit Studenten unseres NCCR austauschen können.

Ist diese Konferenz ein Schritt des NCCR hin auf die europäische Ebene?

Vor vier Jahren hat die EU so genannte Leuchtturmprojekte finanziert. Das eine war das Graphene-Projekt in Manchester, das andere das Human Brain-Projekt an der ETH Lausanne. Diese Projekte haben ein Budget von einer Milliarde Euro. Es sieht so aus, als werde es in einigen Jahren eine weitere Runde dieser EU-Leuchtturmprojekte geben. Unser Ziel ist es, uns gemeinsam mit unseren Partnern in Deutschland und den Niederlanden dafür zu bewerben, um die Entwicklung der Technologie molekularer Systeme auf dem europäischen Niveau für die Zukunft zu sichern.

Die Konferenz wird in einzigartiger Weise auch Forschung und Kunst verbinden. Was ist die Idee dahinter?

Es geht dabei um Kommunikation und Ethik. Wir haben uns gefragt, wie wir über unsere Forschung sprechen können, obwohl sie für Laien ziemlich komplex ist. Eine Antwort auf diese Frage besteht darin, eng mit Künstlern zusammenzuarbeiten und zu sehen, wie sie interpretieren, was wir tun. Wir hoffen, dass dies die Öffentlichkeit besser ansprechen wird. Wir haben mit Künstlern zusammengearbeitet in der Hoffnung, dass sie das Interesse an unserer Forschung steigern können. Darüber hinaus beziehen wir die Öffentlichkeit in einen Dialog über ethische Fragen ein.

Wann beginnt dieser Dialog?

An unserer Konferenz wird das argovia philharmonic, das Aargauer Symphonie Orchester, eine Komposition vorstellen, die auf Illustrationen und Videos basiert, die wir zur Verfügung gestellt haben. Am gleichen Tag werden wir eine öffentliche Ethikdebatte durchführen. Ein Redaktor von «Science» wird die Debatte moderieren, drei Teilnehmer werden auf dem Podium sein. Wir hoffen, dass der Spezialist für Bioethik von der Päpstlichen Akademie für das Leben an der Debatte teilnehmen wird; die anderen beiden werden Wissenschaftler sein.

Was ist für Sie aus wissenschaftlicher Sicht der aufregendste Aspekt dieses NCCR?

Als wir begonnen haben, wählten wir einen sehr breiten Ansatz und hatten eine ganze Reihe von Forschungsprojekten, die durch unsere Neugier getrieben wurden. Ohne diesen Ansatz wären wir in diesen drei Jahren nicht so weit gekommen. In der zweiten Phase – wir haben gerade die vorbereitenden Unterlagen eingereicht – werden wir uns viel stärker fokussieren.

Was wollen Sie am Ende des NCCR erreicht haben?

Wenn wir auch nur ein einziges Produkt bis zur Anwendung bringen könnten, wäre das schon ein schönes Ergebnis. Stellen Sie sich zum Beispiel vor, dass wir sagen könnten: Dieses NCCR hat einige Formen von Blindheit heilen können.


Zur Person:

Professor Thomas Ward, geboren 1964 in Fribourg, ist Direktor des NCCR Molecular Systems Engineering. Er leitet die Ward-Gruppe am Departement für Chemie der Universität Basel. Die Forschung der Gruppe konzentriert sich auf die Nutzung von Proteinen als Träger metallorganischer Komponenten mit Anwendungen in der Katalyse und in der Nanobiotechnologie.
Ward hat organische Chemie an der Universität Fribourg studiert und an der ETH Zürich promoviert. Es folgten ein erstes Postdoc bei Roald Hoffmann an der Cornell Universität in der Theorie und dann ein zweites Postdoc in Lausanne. Er erhielt anschliessend ein A. Werner Stipendium und zog nach Bern, wo er habilitiert wurde. Im Jahr 2000 ging er nach Neuenburg, 2009 nach Basel. Er erhielt 2016 den prestigereichen ERC advanced grant und 2017 den Preis für bioanorganische Chemie der Royal Society of Chemistry.