Innovation Report

 
report BaselArea.swiss

«Ich möchte innovative Forschung in neue Medikamente umsetzen»

04.07.2017

Jährlich erkranken etwa 250´000 Patienten an einer Krebsart, für die es zurzeit keine spezifische Therapie gibt, Krebs, der aufgrund einer fehlgesteuerten Kommunikation zwischen Zellen entsteht. Diese Fehlfunktion entsteht im sogenannten NOTCH-Signalweg. Wirksame Therapiemöglichkeiten fehlen – doch das soll sich ändern. Die Cellestia Biotech AG entwickelt ein neuartiges Medikament gegen diese Krebsart. Der neuartige Wirkstoff greift selektiv nur die fehlgesteuerte Zellkommunikation an. Damit könnten Leukämie, Lymphome und feste Tumore wie zum Beispiel Brustkrebs behandelt werden.

Im Jahr 2014 gründeten Professor Freddy Radtke und Dr. Rajwinder Lehal, der bereits mit seiner Dissertation an diesem Thema gearbeitet hatte, die Firma Cellestia Biotech AG. 2015 kam ein erfahrenes Team von Pharma- und Onkologie-Entwicklungsspezialisten um Michael Bauer hinzu, die sich als Mitgründer bei Cellestia engagierten. Bauer hatte zuvor zusammen mit seinem Team mehrere Jahre lang verschiedene Projekte geprüft, um den Aufbau eines solchen Start-up-Unternehmens mitzugestalten. Wir sprachen mit ihm über Risiken und Nebenwirkungen der Firmengründung.

Interview: Stephan Emmerth

Herr Bauer, wie lange mussten Sie suchen, bevor Sie ein Projekt gefunden haben, bei dem Sie einsteigen wollten?

Michael Bauer: Über viele Jahre hin habe ich zusammen mit Kollegen und neben dem regulären Job – mal mehr und mal weniger intensiv – eine Reihe von Projekten geprüft, evaluiert und wieder verworfen. Zum Teil waren das tolle Projekte, manche waren unglaublich innovativ. Aber immer wieder gab es leider Dinge, die uns bewogen haben, diese Projekte am Ende doch nicht weiter zu verfolgen.

Die Suche hat Sie wohl nicht nur viel Zeit gekostet, sondern auch Geld, immerhin musste ja jedes Mal eine Due Diligence durchgeführt werden?

Diesen Aufwand mussten wir natürlich leisten. Im Prinzip haben wir wie ein kleiner Venture Fund Projekte identifiziert, geprüft und evaluiert. Aufgrund der Zusammensetzung des Teams konnten wir viele Aufgaben selbst erfüllen, teilweise zogen wir Experten hinzu. In vielen Fällen haben uns Spezialisten aus unserem Netzwerk unterstützt, da gab es ein erhebliches Mass an Goodwill. Zum Teil kamen wir für die Kosten auf.

Und warum hatte es vor Cellestia nicht geklappt?

Viele Faktoren müssen stimmen: Als Grundlage natürlich hervorragende, innovative Forschungsergebnisse, die über Patente geschützt sind. Wichtig sind auch geregelte Eigentumsverhältnisse an den Erfindungen und vernünftige Lizenzbedingungen. Zu guter Letzt muss es eine Übereinkunft über die Erwartungen der am Projekt beteiligten Personen geben. Wir haben so ziemlich alles erlebt. In vielen Fällen stellte sich im Verlauf der Prüfung heraus, dass beispielsweise die Forschungsdaten doch nicht so überzeugend waren wie zunächst dargestellt. Oder die Erwartungen hinsichtlich der Lizenzkonditionen lagen zu weit auseinander. Bei einem Projekt wollte man uns Patente verkaufen, die längst verfallen waren. Oft kommt es vor, dass die Wissenschaftler unrealistische Vorstellungen bezüglich des Werts ihres Projekts haben. Ein pensionierter Professor, der schon mehrere Jahre vergeblich versucht hatte, seine Firma zu finanzieren, erwartete von uns, dass wir es für fünf Prozent der Anteile nochmals versuchen. Das ist natürlich keine Basis für eine Partnerschaft.

Forschung und Unternehmertum unter einen Hut zu bringen ist also die grosse Herausforderung?

Es gilt hier, ein Verständnis für die Relationen und den Beitrag der verschiedenen Parteien zu entwickeln, die sich mit sehr unterschiedlichem persönlichem Risiko an einem solchen Projekt engagieren. Hinter Cellestia stehen auf der einen Seite etwa 20 Jahre Grundlagenforschung, elf Jahre davon an der EPFL. Seit etwa neun Jahren leistet Rajwinder Lehal – zunächst im Rahmen seiner Dissertation, dann als Post-Doc und seit 2014 als Chief Scientific Officer – konkrete Arbeit an diesem Projekt. Diese Historie respektieren wir vom Managementteam und sind froh über den Zugang zu dem daraus resultierenden Wissen. Gleichzeitig muss die Erfinderseite den Gesamtaufwand sehen: An der EPFL wurden über die Jahre etwa fünf Millionen an öffentlichen Geldern investiert. Aber bis ein Produkt auf den Markt kommt, braucht es unter Umständen hunderte Millionen. Und der Weg vom ersten erfolgreichen Experiment im Tiermodell bis zu einem für Menschen zugelassenen Medikament ist weit. Insgesamt ist der Aufwand in der Forschung im Vergleich zu den Entwicklungs- und Marketingkosten unter Umständen marginal und beträgt nur noch wenige Prozent. Und die Entwicklungskosten werden von Investoren aufgebracht, für die sich ein Investment lohnen muss. All diese Faktoren müssen in einer Partnerschaft bedacht und respektiert werden. Mit unserem Team hat das geklappt.

Sie verfügen über langjährige Industrieerfahrung. Was hat Sie am Unternehmertum gereizt?

Für mich liegt der Reiz in der Herausforderung, bahnbrechende Erfindungen in Produkte umzusetzen. Ich sehe mich als Produktentwickler und wollte schon als Student eine Firma gründen. Rückblickend muss ich sagen, dass ich zum Glück erst einmal fast 20 Jahre Berufserfahrung gesammelt habe. Dies ist wichtig, um die Komplexität der Herausforderungen in der Produktentwicklung in Life Sciences und Pharma gut verstehen und einschätzen zu können. Dieser Erfahrungsschatz hilft auch zu wissen, wo das eigene Wissen endet und wann welche Experten hinzugezogen werden müssen, um ein Projekt oder eine Firma erfolgreich voranbringen zu können.

Wie verlief die Inkubation vom ersten Kontakt bis zu Ihrem Einstieg als Mitgründer bei Cellestia?

Der heutige Chief Scientific Officer Rajwinder Lehal und ich waren über einige Jahre hinweg regelmässig miteinander in Kontakt. Zu dieser Zeit war das Projekt aber noch nicht weit genug fortgeschritten für eine Firmengründung. 2014 wurde dann Cellestia gegründet, zunächst von Professor Radtke, Rajwinder Lehal und Maximilien Murone. Im Sommer 2015 trafen wir uns einige Male mit dem Lausanner Forscher- und Gründerteam bei i-net, der Vorgängerorganisation von BaselArea.swiss. Dann ging es recht zügig. In wenigen Treffen konnten wir das Projekt evaluieren und ein gutes persönliches Verhältnis entwickeln, was für mich und meine Partner für einen Einstieg bei Cellestia sehr wichtig war. Wir waren uns schnell einig, es lief quasi per Handschlag. Danach kamen die notwendigen Verträge, und im November waren wir bereits im Handelsregister eingetragen. Unser Anwalt und Mitgründer Ralf Rosenow regelte die Formalitäten. Wir haben uns entschlossen, das Headquarter von Lausanne nach Basel zu verlegen und die Forschungsaktivitäten in Lausanne zu belassen, sozusagen eine transkantonale Partnerschaft.

Warum ist das Headquarter in Basel?

Für uns war das wichtigste Argument für Basel der Zugang zu Talenten und Ressourcen für die Produktentwicklung. Dies ergibt sich aus der Nachbarschaft zu führenden Pharmakonzernen wie Novartis, Roche, Actelion und vielen weiteren Firmen. Dieser Zugang zu erfahrenen Entwicklungsspezialisten ist in Lausanne schwieriger. Hinzu kommt, dass über unseren Mitgründer Roger Meier und weitere Kollegen bereits ein aktives Investoren-Netzwerk in Basel besteht, das Affinität zur Branche und zum Standort Basel mitbringt. Diesen Zugang hatten wir zu Beginn in Zürich oder Genf noch nicht. Mir persönlich gefällt auch die Arbeits- und Lebensqualität in Basel. Die Stadt ist übersichtlich und trotzdem international, mit einem vielfältigen Kulturangebot. Zudem hat der Flughafen Basel hervorragende Verbindungen – man befindet sich in der Mitte Europas und ist in nur ein bis zwei Flugstunden praktisch überall in Europa, in London, Berlin oder Barcelona. Für Lausanne spricht das herausragende akademische Umfeld mit EPFL und dem Swiss Institute für Experimental Cancer Research. Auch hier gibt es ein hervorragendes Umfeld für Start-up-Unternehmen, allerdings aus unserer Sicht eher in ingenieurwissenschaftlichen und technischen Disziplinen oder Medizintechnik. Jedes Jahr werden viele Firmen an der EPLF gegründet, das Innovationspotential ist enorm. Allerdings ist Cellestia die erste Firmengründung aus der EPFL, die ein Medikament in die klinische Entwicklung bringt. Wir sind froh, über den nun etablierten Ansatz mit zwei Standorten die positiven Elemente beider Regionen vereinen zu können.

Welche Voraussetzungen waren denn entscheidend, dass es schliesslich zur Zusammenarbeit und Firmengründung kam?

Es hat eigentlich von Anfang an alles gepasst. Zunächst einmal muss die persönliche Atmosphäre zwischen den beteiligten Persönlichkeiten stimmen. Dies war auch die Grundlage, um eine für alle Mitgründer faire Übereinkunft im Verständnis der Bewertung und Zuteilung der jeweiligen Anteile an der Firma zum Zeitpunkt der Gründung zu finden. Auf der anderen Seite war es natürlich zentral, dass die inhaltliche Prüfung des Projekts – sowohl was die wissenschaftlichen Grundlagen als auch was die Qualität der Daten betrifft – und die Prüfung des Patents sowie die Lizenzbedingungen der EPFL positiv waren. Wichtig war uns auch, dass das Risikoprofil überschaubar ist, also eine gute Balance zwischen Innovation und Bezug zu bereits geleisteter Forschung hält.

Wie wird sich Cellestia operativ weiterentwickeln?

Cellestia hat ja schon eine lange Vorgeschichte, beginnend mit den Forschungsaktivitäten an der EPFL. Mit der Managementerweiterung 2015 kamen neben mir weitere Mitgründer hinzu: Dirk Weber als Chief Medical Officer sowie die bereits erwähnten Mitgründer Ralf Rosenow und Roger Meier. Inzwischen beschäftigt Cellestia insgesamt sechs Mitarbeiter. Hinzu kommen zahlreiche Dienstleistungs- und Beratungsmandate, die je nach Bedarf unsere internen Ressourcen ergänzen. Insgesamt schätze ich, dass inzwischen weit über 100 Personen an Cellestia mitwirken, wenn man die externen Dienstleistungen mitberücksichtigt. Wir rechnen damit, dass wir mit dem Fortschritt unseres ersten Projekts in Richtung klinische Entwicklung weiter wachsen werden und das Team weiter ausbauen. Ausserdem möchten wir möglichst bald weitere Produkte in unserer Pipeline entwickeln. Dies wird sicherlich weitere finanzielle Mittel beanspruchen. Ebenfalls wird sich der Verwaltungsrat weiterentwickeln, der mit jeder Finanzierungsrunde erweitert und angepasst wird, um die neuen Investoren angemessen zu repräsentieren. Die Forschungsarbeiten laufen zunehmend über externe Dienstleister, sowie zum Teil weiterhin im Labor von Professor Freddy Radtke an der EPFL. Derzeit setzen wir mit der EPLF neue Rahmenverträge über die weitere Nutzung ihrer Infrastruktur auf. Die Flexibilität dort ist für uns sehr hilfreich.

Was sind die nächsten Meilensteine?

Ein entscheidender Meilenstein ist die Behandlung der ersten Krebspatienten. Wir hoffen, dass wir im Oktober die ersten Patienten behandeln können.

Wie sind die klinischen Studien aufgebaut?

Der Ablauf der klinischen Prüfung von neuen Wirkstoffen ist streng reglementiert. In der Phase-I-Studie wird zunächst die Verträglichkeit des Wirkstoffs geprüft. Hier werden wir Patienten behandeln, bei denen es eine hohe Wahrscheinlichkeit gibt, dass sie an einer Krebsart leiden, bei denen NOTCH eine Rolle spielt. In der darauffolgenden Phase-II-Studie wird die Wirksamkeit unseres Medikaments in verschiedenen Krebsarten erforscht. Hier werden wir Patienten auswählen, bei denen die Aktivierung des NOTCH-Signalwegs mit einem von Cellestia etablierten Diagnoseverfahren nachgewiesen wird. Damit ist ein therapeutischer Nutzen für diese Patienten sehr wahrscheinlich.

Gab es bisher Überraschungen?

Nein, nicht wirklich, weil wir mit allem rechnen. Oder doch, ja, erfreuliche Überraschungen gab es: Wir waren aufgrund vieler Vorarbeiten schon sehr sicher, was den Wirkmechanismus angeht. Jetzt ist es aber nach langen Versuchen endlich gelungen, den exakten Bindungsmechanismus des Wirkstoffs nachzuweisen, was alle vorherigen Untersuchungen voll bestätigte. Dies ist auch die Grundlage dafür, das Programm deutlich auszudehnen. Wir können nun eine Plattform aufbauen, auf deren Grundlage wir neue Wirkstoffe für neue Indikationen generieren können. Ausserdem war es nicht ganz trivial, den Wirkstoff in grossem Massstab in hoher Qualität herzustellen. Dafür waren innovative Schritte nötig, die letztlich zu einem Patent führen.

Haben Sie schon die nächsten fünf Jahre vor Augen?

Wir sind sehr optimistisch, was unsere Erfolgsaussichten für Cellestia angeht und planen etwa zwei Jahre im Detail voraus. Natürlich haben wir auch einen Plan für die gesamte Entwicklung über fünf Jahre hinaus. Allerdings ändern sich solche Pläne erfahrungsgemäss immer wieder mit den erzielten Resultaten. Das ist auch der Reiz und die Herausforderung in der Medikamentenentwicklung – es lässt sich nicht alles im Detail vorausplanen und man muss flexibel auf neue Ergebnisse reagieren. Dies gilt selbstverständlich auch für eventuelle Rückschläge. Es ist wichtig, hinreichend Reserven zu haben, um diese zu verarbeiten und zu lösen. Dank der erfolgreichen Finanzierungsrunden, die wir im Januar 2017 abschliessen konnten, sind wir in der Lage, schon jetzt mit der Phase I zu beginnen und parallel die weitere Finanzierung in Angriff zu nehmen.

Wer hat bislang in Cellestia investiert?

Die ersten Investoren nach der Einlage des Gründungskapitals waren vor allem viele unserer Berater, also mit der Branche vertraute Experten sowie Privatpersonen, die sich als Investoren im Life-Sciences und Pharma-Sektor engagieren. Etwa ein Drittel der Aktionäre sind Experten aus dem Pharma und Life-Sciences Umfeld. Im Laufe der SEED A-, B- und C-Runde kamen dann auch einige grössere Investments seitens Family Offices hinzu. Der erste institutionelle Investor, die PPF Group, beteiligte sich nach einer ausführlichen Due Diligence, durchgeführt durch Experten der Firma Sotio. Insgesamt konnten wir bislang acht Millionen Franken mobilisieren, um die Produktentwicklung von Cellestia voranzutreiben. In Vorbereitung auf die nächste Finanzierungsrunde sind wir mit privaten Investoren, Venture Funds sowie Pharma-Unternehmen im Gespräch. Wir sind zuversichtlich, gute Partner für die nächste Phase von Cellestia gewinnen zu können. Die richtige Mischung aus Partnerschaft und Finanzierung ist wichtig. Wir brauchen starke Partner an Bord, um unser Medikament Patienten schnell zugänglich zu machen.


Zur Person
Michael Bauer (geboren 1966) ist seit November 2015 CEO bei Cellestia. Er studierte an der Universität Hamburg Chemie und absolvierte von 1994 bis 1997 sein Doktorat in Biotechnologie an der Technischen Universität Hamburg-Harburg. Nach dem Berufseinstieg in der Metabolismus-Forschung bei der Firma Zeneca in England wechselte er 2001 nach Basel zu Syngenta. Dort arbeitete er als Global Regulatory Affairs Manager, im Projekt- und Portfolio-Management. Von 2007 bis 2009 war er als Projektleiter bei Arpida, einer Biotech-Firma im Bereich Antibiotikaentwicklung, tätig. 2009-12 leitete er als Global Program Manager bei Novartis globale Entwicklungsprojekte im Bereich Onkologie und brachte eine Reihe von Produkten in die klinische Entwicklung. 2012-15 war er bei Polyphor Leiter der Klinischen Entwicklung. 

report Life Sciences

Polyneuron erreicht Meilenstein

21.07.2017

report Life Sciences

Myovant verstärkt Führungsmannschaft

20.07.2017

report BaselArea.swiss

Molekulare Fliessbänder, um den Körper zu heilen

08.06.2017

Stellen Sie sich vor, bestimmte Formen von Blindheit könnten geheilt werden. Oder stellen Sie sich vor, dass der Körper selbst Arzneimittel erzeugen könnte, um Krankheiten zu heilen. Beides könnte das Ergebnis des Sonderforschungsbereichs Entwicklung molekularer Systeme sein, des National Centre of Competence in Research Molecular Systems Engineering (NCCR MSE). Langfristig soll es molekulare Systeme und molekulare Fabriken schaffen, die hochwertige chemische Verbindungen produzieren. Ausserdem soll es Zellsysteme für neue Anwendungen in der medizinischen Diagnostik, der Therapie und der Behandlung entwickeln. NCCR MSE-Direktor Thomas Ward hat die Ziele hoch gesteckt: Er will Basel zum Koordinationszentrum des nächsten Europäischen Flaggschiffprojekts machen. Dabei geht es um eine Milliarde Euro.

Interview: Ralf Dümpelmann

Thomas Ward, Sie sind der Direktor des NCCR MSE. Wie kam es dazu?

Thomas Ward: Während meiner Arbeit an der Universität Neuenburg interessierten wir uns für künstliche Metalloenzyme. Wir brachten Ruthenium, von dem es in der Natur nicht viel gibt, in Proteine ein. Das Ergebnis war ein künstliches Metalloenzym. Aus Neugier haben wir damit weitergemacht und uns in der Forschungsgruppe stärker biologischen Fragen zugewandt. Schliesslich wollte ich mehr mit Molekularbiologen zusammenarbeiten. Das war einer der Hauptgründe, warum ich nach Basel gegangen bin. Als ich vor neun Jahren hier ankam, war das ETH Department of Biosystems Science and Engineering (D-BSSE) gerade nach Basel gezogen. Das veranlasste Professor Wolfgang Meier, damals Leiter des Departements Chemie unserer Universität, dazu, produktive Gespräche mit dem D-BSSE aufzunehmen. Am Ende bemühten sich er und Daniel Müller, der Co-Direktor des D-BSSE, um einen nationalen Sonderforschungsbereich (NCCR), der schliesslich vom Schweizerischen Nationalfonds (SNF) finanziert wurde.

Was war das Ziel des NCCR?

Wolfgang Meier und Daniel Müller sahen die Gelegenheit, eine Zusammenarbeit zwischen Biologen und Chemikern aufzubauen. Die Biologen waren stark auf die Chemie angewiesen, und die Chemiker konnten die nötigen chemischen Bausteine liefern, mit denen einige der grössten Herausforderungen der Biologie gelöst werden können. Das ist wissenschaftlich gesehen eine einzigartige Kombination. Aus meiner Sicht spiegelt sich das auch im Aspekt unseres Namens: molecular systems engineering – das System ist zentral.

Wollen Sie mit Hilfe der Chemie künstliche biologische Systeme bauen?

Am Ende unserer Forschungsarbeit wollen wir die Eigenschaften und die Komplexität lebender Systeme reproduzieren. Das kann man auf zwei Wegen erreichen. Die Chemiker nehmen einen Raum, bringen Objekte hinein und schauen zu, was dabei geschieht. Das ist der Ansatz von unten nach oben. In der Biologe wiederum nimmt man ein komplexes System und schliesst eine Komponente nach der anderen aus. Dabei konzentrieren sich Biologen darauf, das System zu berechnen. Und das tun sie gut. Sie können die Dinge kontrollieren, ohne dass sie die Einzelheiten dieser Systeme auf molekularer Ebene verstehen. Diese beiden Ansätze berühren sich an einer bestimmten Stelle – und da kommt unser NCCR ins Spiel.

Wie könnte das potenzielle Endergebnis aussehen? Ein kleiner Golem?

Wir werden ganz sicher nicht versuchen, bestimmte Bestandteile des Lebens zu imitieren. Wir konzentrieren uns stattdessen auf eine künstliche Organelle, etwas, das man in lebende Systeme einfügen kann. Das würde in lebenden Systemen funktionieren, ohne selbst alle Eigenschaften eines lebenden Systems zu haben. Ich nenne solche Komponenten molekulare Prothesen. Sie sind wie künstliche Legobausteine, die in lebende Systeme passen. Auf diesem Weg sind wir schon ziemlich weit vorangekommen.

Wie ist die Arbeit des NCCR strukturiert?

Das Netzwerk arbeitet während zwölf Jahren, eingeteilt in drei Phasen. Rund 30 Gruppen sind mit dem NCCR verbunden, davon sind etwa 20 in Basel. Wenn jemand ausserhalb Basels Kompetenzen hat, die wir brauchen, können er oder sie in das Netzwerk integriert werden. Das können Leute am Paul Scherrer Institut sein oder an der Universität Bern. Wir kommen jetzt ans Ende der ersten vierjährigen Phase. Für uns als Chemiker ist der erste Schritt die Synthese und das Zusammenfügen von Molekülen zu Modulen, also die Verbindung von mehreren Molekülen. So synthetisieren zum Beispiel Sven Panke am D-BSSE und ich künstliche Enzyme. Daniel Müller am D-BSSE manipuliert auf der anderen Seite Porenproteine, die es erlauben, den Transport von Substanzen und Produkten in eine Zelle und wieder heraus zu kontrollieren. Das Ziel ist es, eine künstliche Organelle zu schaffen, die zwei oder drei Enzyme enthält und diese Prothese in eine Zelle einzufügen. Damit können wir den natürlichen Stoffwechsel einer Zelle mit einem künstlichen Stoffwechsel ergänzen, um neue Chemikalien zu produzieren. Am Ende der ersten Phase werden wir idealerweise das Modulproblem gelöst haben. In der zweiten und dritten Phase können wir uns dann darauf konzentrieren, molekulare Fabriken und Zellsysteme zu schaffen.
Am Ende sollte eine solche chemische Fabrik etwas Nützliches produzieren können. Das Zellsystem sollte dazu genutzt werden können, eine Krankheit zu heilen. Um diese Ziele zu erreichen, braucht es ein molekulares Fliessband, ganz im Geiste dessen, was Henry Ford im frühen 20. Jahrhundert entwickelt hat, aber diesmal auf molekularer Ebene.

Können Sie auf diesem Fliessband bereits ein stabiles System erzeugen?

Ja. Die Frage ist nur, wie stabil und für wie lange. Wir haben Systeme, die in einer Zelle während zwei Wochen funktionieren. Ob das ausreicht, um eine Krankheit zu heilen, muss sich noch zeigen.

Welchen Nutzen kann Ihre Arbeit bringen?

Unser Ziel ist es, die Art und Weise zu ändern, in der die Biologie und die Chemie langfristig funktionieren. Das ist eine riskante Strategie, aber der potenzielle Nutzen ist riesig.

Worin könnte dieser Nutzen bestehen?

Sie führen ein molekulares System oder ein Zellsystem in den Körper ein und dieses System heilt eine Krankheit.

Wann wird das möglich sein?

Es gibt bereits zwei sehr fortgeschrittene Systeme, beide initiiert und finanziert von unserem NCCR. Botond Roska vom Friedrich Miescher Institut für biomedizinische Forschung hat ein System entwickelt, dass in das Auge injiziert wird und die Sehkraft wiederherstellt. Die klinischen Tests für dieses System beginnen im Winter 2017. Das System beruht auf Gentechnik, bei der DNA so injiziert wird, dass das Auge wieder selbst Pigmente erzeugt. Das zweite System soll Diabetes heilen. Dabei werden körpereigene Fettzellen so umprogrammiert, dass sie in der Lage sind, Insulin zu produzieren. Dann werden sie in den Körper injiziert und erlauben ihm so, autonom Insulin zu produzieren, wenn er es braucht.

Werden diese Ideen in Start-ups weiterentwickelt?

Ja. In den vergangenen drei Jahren sind bereits zwei Start-ups entstanden. Auch die Diabetesbehandlung ist ein ernsthafter Kandidat für ein Start-up. Der Nationalfonds legt Wert auf diese Dinge. Er will, dass wir unsere Forschung auch anwendungsfähig machen.

Sie organisieren Ende August die International Conference on Molecular Systems Engineering. Was ist das Hauptziel?

Es ist eine Herausforderung, eine solche Konferenz zu organisieren. Denn üblicherweise wollen die Teilnehmer zu den Spezialisten ihres Fachgebiets sprechen. Wir aber wollen unsere Herangehensweise auf eine Reihe von unterschiedlichen Gebieten anwenden. Wir werden herausragende Referenten haben. Aber wir müssen die Leute überzeugen, dass es sich lohnt, das Thema von einer breiteren Perspektive her anzuschauen. Die gute Nachricht ist, dass es ähnliche Projekte in Europa gibt, in den Niederlanden und in Deutschland. Wir werden eine Vorkonferenz durchführen, bei der Doktoranden dieser anderen Projekte ihre Erfahrungen und Ideen mit Studenten unseres NCCR austauschen können.

Ist diese Konferenz ein Schritt des NCCR hin auf die europäische Ebene?

Vor vier Jahren hat die EU so genannte Leuchtturmprojekte finanziert. Das eine war das Graphene-Projekt in Manchester, das andere das Human Brain-Projekt an der ETH Lausanne. Diese Projekte haben ein Budget von einer Milliarde Euro. Es sieht so aus, als werde es in einigen Jahren eine weitere Runde dieser EU-Leuchtturmprojekte geben. Unser Ziel ist es, uns gemeinsam mit unseren Partnern in Deutschland und den Niederlanden dafür zu bewerben, um die Entwicklung der Technologie molekularer Systeme auf dem europäischen Niveau für die Zukunft zu sichern.

Die Konferenz wird in einzigartiger Weise auch Forschung und Kunst verbinden. Was ist die Idee dahinter?

Es geht dabei um Kommunikation und Ethik. Wir haben uns gefragt, wie wir über unsere Forschung sprechen können, obwohl sie für Laien ziemlich komplex ist. Eine Antwort auf diese Frage besteht darin, eng mit Künstlern zusammenzuarbeiten und zu sehen, wie sie interpretieren, was wir tun. Wir hoffen, dass dies die Öffentlichkeit besser ansprechen wird. Wir haben mit Künstlern zusammengearbeitet in der Hoffnung, dass sie das Interesse an unserer Forschung steigern können. Darüber hinaus beziehen wir die Öffentlichkeit in einen Dialog über ethische Fragen ein.

Wann beginnt dieser Dialog?

An unserer Konferenz wird das argovia philharmonic, das Aargauer Symphonie Orchester, eine Komposition vorstellen, die auf Illustrationen und Videos basiert, die wir zur Verfügung gestellt haben. Am gleichen Tag werden wir eine öffentliche Ethikdebatte durchführen. Ein Redaktor von «Science» wird die Debatte moderieren, drei Teilnehmer werden auf dem Podium sein. Wir hoffen, dass der Spezialist für Bioethik von der Päpstlichen Akademie für das Leben an der Debatte teilnehmen wird; die anderen beiden werden Wissenschaftler sein.

Was ist für Sie aus wissenschaftlicher Sicht der aufregendste Aspekt dieses NCCR?

Als wir begonnen haben, wählten wir einen sehr breiten Ansatz und hatten eine ganze Reihe von Forschungsprojekten, die durch unsere Neugier getrieben wurden. Ohne diesen Ansatz wären wir in diesen drei Jahren nicht so weit gekommen. In der zweiten Phase – wir haben gerade die vorbereitenden Unterlagen eingereicht – werden wir uns viel stärker fokussieren.

Was wollen Sie am Ende des NCCR erreicht haben?

Wenn wir auch nur ein einziges Produkt bis zur Anwendung bringen könnten, wäre das schon ein schönes Ergebnis. Stellen Sie sich zum Beispiel vor, dass wir sagen könnten: Dieses NCCR hat einige Formen von Blindheit heilen können.


Zur Person:

Professor Thomas Ward, geboren 1964 in Fribourg, ist Direktor des NCCR Molecular Systems Engineering. Er leitet die Ward-Gruppe am Departement für Chemie der Universität Basel. Die Forschung der Gruppe konzentriert sich auf die Nutzung von Proteinen als Träger metallorganischer Komponenten mit Anwendungen in der Katalyse und in der Nanobiotechnologie.
Ward hat organische Chemie an der Universität Fribourg studiert und an der ETH Zürich promoviert. Es folgten ein erstes Postdoc bei Roald Hoffmann an der Cornell Universität in der Theorie und dann ein zweites Postdoc in Lausanne. Er erhielt anschliessend ein A. Werner Stipendium und zog nach Bern, wo er habilitiert wurde. Im Jahr 2000 ging er nach Neuenburg, 2009 nach Basel. Er erhielt 2016 den prestigereichen ERC advanced grant und 2017 den Preis für bioanorganische Chemie der Royal Society of Chemistry.

report ICT

Merck nutzt Genedata-Software für Neuentwicklungen

19.07.2017

report Life Sciences

Forschungsfirma Idorsia startet an der Börse

16.06.2017

report BaselArea.swiss

„Ich erlebe in Basel ein sehr innovationsfreundliches Klima“

12.04.2017

Am Anfang standen Forschungsressourcen aus einem Vierteljahrhundert. Simon Ittig und seine Kollegen am Departement Biozentrum der Universität Basel haben daraus ein Forschungsprojekt und schliesslich ein Startup gemacht. T3 Pharmaceuticals entwickelt neue Therapien zur Behandlung fester Tumore.

Wie kam es zu T3 Pharma?

Simon Ittig: Ich habe am Biozentrum in der Gruppe von Professor Guy Cornelis doktoriert, die sich hauptsächlich mit einem Nadelsystem von Bakterien beschäftigte. Bakterien brauchen diese Nadeln, um Proteine in Zellen zu schiessen und ihre Pathogenese zu etablieren. Mein Doktorvater hatte diesen Mechanismus 25 Jahre zuvor mitentdeckt und seither auf diesem Gebiet geforscht. Als ich 2012 das Doktorat abschloss und Professor Cornelis emeritierte, konnte ich viele Ressourcen wie Bakterienstämme und Studienprotokolle übernehmen. Als Postdoc in einer anderen Gruppe am Biozentrum beschäftigte ich mich mit der Frage, wie Proteine schnell in Zellen transportiert werden können. Das brachte mich zurück auf meine Sammlung an Bakterienstämmen, da diese von Natur aus genau das machen. In kurzer Zeit gelang es mir zu zeigen, dass ein solcher Proteintransport auch wirklich funktioniert und zwar schnell, effizient und synchron. Dieses Potential hat mich und meine Forschungskollegen gepackt.

Wozu genau kann diese Technologie verwendet werden?

Wenn man Bakterien hat, welche spezifische, beispielsweise humane Proteine in Zellen transportieren, kann man diese Zellen nach Wunsch stimulieren. Schon länger weiss man, dass Bakterien zu festen Tumoren wandern. Entsprechend haben wir uns auf das Gebiet der festen Tumoronkologie fokussiert und konnten überraschend schnell beeindruckende Ergebnisse erzielen. Wir verfügen nunmehr über Bakterien, die über längere Zeit spezifisch im Tumor wachsen. Zudem können wir diese nun auch so programmieren, dass sie bestimmte Wirkstoffe produzieren und in die Zellen abgeben. Und zwar genau dort, wo diese Substanzen wirken können. Unsere Technologie zeigt dabei eine grosse Stabilität.

War es für Sie naheliegend, mit dieser Idee sogleich eine Firma zu gründen?

Ja, diese Idee kam relativ früh. Die erste finanzielle Unterstützung der KTI, der Krebsliga und und kleineren Stiftungen erhielten wir noch als rein akademische Forscher. Dass wir uns mit unserer Technologie für den Proteintransport selbständig machen wollen, war dann bereits klar. Die Gründung einer eigenen Firma war auch eine Voraussetzung für die weiteren Forschungsgelder von KTI. Das Biozentrum hat uns bei der Ausgründung in vielen Bereichen unterstützt. Die Patente gehören zwar nach wie vor der Universität, wir verfügen aber über eine exklusive weltweite Lizenz.

Wie haben Sie T3 Pharma finanziert?

Zum Start und auch in der Folge haben wir substantielle Beträge an Forschungsgeldern erhalten. Die Mittel sind allerdings in der Regel an Löhne und Verbrauchsmaterial gebunden. Stiftungen wollen in erster Linie die eigentliche Forschungsarbeit finanzieren. Irgendwann kommt man damit an Grenzen, weshalb wir begannen, aktiv nach Investoren für unsere Firma zu suchen.

Mit grossem Erfolg, was war ausschlaggebend?

Zuerst einmal muss natürlich die Geschäftsidee stimmen. Zweitens braucht es ein grosses und gegenseitiges Vertrauen. Das ganze Setup sollte geeignet sein, die Firma einige Jahre zu begleiten. Wenn man alle zwei Jahre wieder Monate braucht, um eine nächste Finanzierungsrunde zu sichern, bindet das zu viele Ressourcen, bringt viel Unsicherheit und lenkt von den Forschungstätigkeiten ab. Aus diesem Grund haben wir Investoren gesucht und gefunden, welche die finanziellen Möglichkeiten und das notwendige Verständnis haben, an uns glauben und bereit sind, mit uns einen langen Weg zu gehen.

Sie waren also in einer privilegierten Lage und konnten Investments auch ausschlagen?

Vielleicht. Ich bin überzeugt, dass man nicht jedes Angebot annehmen sollte, wenn man nicht muss. Wir prüfen sorgfältig, an welche Bedingungen eine Finanzierung geknüpft ist und wollen auch ein Gefühl für die Absichten der Investoren erhalten. Empfehlenswert ist es auch, sich Optionen offen zu halten. Wer sich zu früh mit etwas zufrieden gibt, dem kann dies später sehr teuer zu stehen kommen.

Sie haben über 2 Millionen von Stiftungen erhalten. Das ist ungewöhnlich viel für ein Startup?

Der Aufwand für eine solche Finanzierung ist natürlich auch sehr hoch, besonders am Anfang, wenn man noch keinen Leistungsausweis vorweisen kann und noch keine Forschungsgelder erhalten hat. Entscheidend ist, frühzeitig erfahrene Leute an Bord zu holen. Das gibt den Stiftungen die nötige Sicherheit bezüglich der Umsetzbarkeit des Projekts. Wichtig ist auch, kleinere Beträge wert zu schätzen. Ich bin auch sehr dankbar, dass ich von einem sehr erfahrenen und erfolgreichen Wissenschaftler, Prof. Nigg, viel über die Kunst des Antragschreibens lernen konnte. Mit den Professoren Nigg vom Biozentrum und Christofori vom Departement Biomedizin hatten wir schon früh ein fachlich stimmiges und interdisziplinäres Konsortium gebildet. Ohne diese beiden erfahrenen Professoren gäbe es unsere Firma in dieser Form nicht.

Wie hoch war denn die Erfolgsquote?

Ich schätze, dass wir bisher auf die Hälfte unserer Gesuche eine positive Antwort erhalten haben.

Mit diesem Stiftungsgeld sind Sie weit gekommen, aber die nächsten Schritte machen sie mit Unterstützung von Privatinvestoren. Ist das besser, als auf Risikokapitalgesellschaften zu setzen?

Selbstverständlich haben wir beide Alternativen geprüft. Private und institutionelle Investoren schliessen sich ja gegenseitig nicht aus. Wir haben nun jedoch Privatpersonen bevorzugt, weil sie in der Regel selber oder in kleinen Gremien und somit schneller entscheiden, ob sie investieren wollen oder nicht. Ein zweiter Punkt: Es ist mir persönlich auch wichtig, dass wir gemeinsam eine Vorstellung der nächsten Jahre entwickeln und auf diese Ziele hinarbeiten. Die Interaktionen, die gemeinsame Vision und das Gefühl einer ähnlichen Wertehaltung bringen viel Freude und Zuversicht. Es muss einfach stimmen, fachlich und menschlich.

Wie findet man private Investoren?

Eigentlich geht das nur über ein gutes Netzwerk und unsere erfahrenen Berater. Denn im Unterschied zu Risikokapitalgesellschaften halten sich Privatinvestoren eher diskret im Hintergrund. Es ist deshalb wichtig, sich schon früh Gedanken über die Positionierung des eigenen Unternehmens, des Teams und seiner Technologien zu machen. Eine gut geplante Kommunikation hilft. Sind die Ideen erst einmal bekannt, kommt man leichter in Kontakt mit den richtigen Leuten. Wer in einem Gespräch überzeugt, hat gute Chancen, dass sich ein Privatinvestor engagiert.

Was sehen Ihre nächsten Schritte aus?

Die Finanzierung von T3 Pharma ist vorerst gesichert. Wir können uns somit auf unsere Forschung konzentrieren und darauf, unsere Technologie zu validieren und die präklinische Entwicklung vorzubereiten. Mittlerweile beschäftige ich mich als CEO mit Arbeiten ausserhalb des Labors, während sich meine vier Kollegen voll auf die Forschung konzentrieren.

Was ist Ihre langfristige Vision?

Wir wollen unsere Technologie bis zur Anwendung im Patienten bringen. Das ist unser grosser Treiber in der täglichen Arbeit. Wie und wann wir dieses Ziel erreichen werden, kann ich heute noch nicht sagen, auch nicht, ob es dann T3 Pharma noch als selbständiges Unternehmen gibt. Wer weiss schon, was die Zukunft bringt. Wir sind deshalb offen und fokussieren uns zuerst auf unsere Forschung.

Wie nehmen Sie das hiesige Ökosystem für Jungunternehmer wahr?

Wir haben eine gute Anbindung an die Universität und schätzen die offenen Türen. Wer sich traut und auf die Leute zugeht, erhält viel Unterstützung. Ich erlebe in Basel ein sehr innovationsfreundliches Klima. Natürlich bildet der grosse Life-Sciences-Cluster ein unheimlich positives Umfeld für Startups wie wir. Auch die Innovationsförderung von BaselArea.swiss hilft auf unkomplizierte Art, wenn es darum geht, die richtigen Leute zu treffen.

Dennoch: punkto Startups hinkt Basel anderen Standorten hinterher. Was müsste unternommen werden?

Ohne Eigeninitiative und Durchhaltewillen läuft gar nichts. Wer beides hat, findet hier in Basel und der Schweiz beste Voraussetzungen. Wenn ich einen Wunsch frei hätte, dann würde ich den informellen Austausch an der Universität stärker institutionalisieren. Früher Input von erfahrenen Fachspezialisten zu einer Startup-Idee könnte jungen Forschern dabei helfen, Selbstvertrauen für die nächsten Schritte zu tanken und die eigenen Ideen erfolgreicher vor einem Gremium zu präsentieren. Eine Absage kann manchmal ganz schön entmutigend sein.

Gibt es denn viele Ideen, die so ungeboren begraben werden?

Ja, es gibt sie und ich finde das sehr schade. Es ist für viele Menschen keine Selbstverständlichkeit, sich vor andere hinzustellen und zu sagen „Ich will das, ich kann das und ich mache das.“ Nur wenige Jungforscher trauen sich zu, eine derart grosse Hürde zu nehmen und auch mal ein Projekt gegen Widerstände zu verfolgen. Viele talentierte junge Wissenschaftler bleiben so auf der akademischen Schiene und publizieren weiter, bis irgendwann der Zug für ein Startup abgefahren ist. Es würde helfen, wenn sie ihre Ideen informell diskutieren könnten, ohne gleich alles an die grosse Glocke hängen zu müssen. Ich bin überzeugt, es gäbe noch mehr innovative Startups. Denn ist diese Hürde erst einmal überwunden, erhält man unglaublich viel Unterstützung auch von fachfremden Professoren, die zum Weitermachen ermutigen. So ist es mir ergangen.

Und was sagt Ihr Doktorvater zu T3?

Er hat eine Riesenfreude an uns. Guy Cornelis berät uns auch wissenschaftlich und hilft uns, wo er kann. Das Verhältnis hat sich inzwischen auch verändert und ist sehr freundschaftlich. geworden.

Zur Person:

Dr. Simon Ittig hat an den Universitäten Bern, Wien und Strassburg Biochemie und Biotechnologie studiert und am Biozentrum der Universität Basel in Mikrobiologie promoviert. Aus einem Forschungsprojekt zum Thema Typ 3-Technologien – Bakterien als vielseitige Werkzeuge für den Proteintransport wurde das Startup T3 Pharmaceuticals.

report Life Sciences

Roche erhält Zulassung für Lungenkrebstest

02.06.2017

report Life Sciences

Plattform von Memo Therapeutics beweist Wirksamkeit

24.05.2017

report Invest in Basel region

Roivant Sciences gründet Hauptsitz in Basel

19.12.2016

Basel - Das Biopharmazie-Unternehmen Roivant Sciences wird zukünftig weltweit von Basel als neuem Hauptsitz aus operieren. Gleichzeitig ziehen auch Partnerunternehmen nach Basel. Roivant und seine Partnerunternehmen wurden von BaselArea.swiss unterstützt.

BaselArea.swiss hat Roivant und seine Partnerunternehmen bei der Standortevaluierung und Ansiedlung unterstützt. Die Standortpromotionsorganisation der Nordwestschweiz begrüsst die neuen Unternehmen in der Region. Sie freut sich, dass solche spannenden und schnell wachsenden Firmen Basel für ihren Hauptsitz gewählt haben. „Die Zielsetzung von Roivant besteht darin, bei der Entwicklung neuer Medikamente für Patienten Zeit und Kosten zu reduzieren“, wird Vivek Ramaswamy, Gründer der Firmengruppe Roivant, in der Ankündigung zur Etablierung des neuen Hauptsitzes zitiert. „Wir sind der Überzeugung, dass dieser Standort im Zentrum der Talente und Pharmainnovationen Europas zu diesem Ziel beiträgt.“ Roivant Sciences hat sich auf den Abschluss der Spätphase der Entwicklung von Medikamenten spezialisiert. Dazu arbeitet Roviant unter anderem mit Eisai, GlaxoSmithKline und Takeda Pharmaceuticals zusammen. Zu den Interessensbereichen von Roivant zählen Neurologie, Onkologie, Endokrinologie, Dermatologie und Hepatologie.

Gleichzeitig mit Roivant planen auch Partnerunternehmen, ihren Hauptsitz nach Basel zu verlegen. In der Mitteilung wird darunter die Axovant Sciences Ltd. genannt. Das Biopharmazie-Unternehmen ist auf die klinische Phase bei der Entwicklung von Medikamenten gegen Demenzkrankheiten spezialisiert. Das Unternehmen beabsichtige, in Basel „eine vollständig integrierte Organisation aufzubauen, welche weltweit wirtschaftliche und medizinische Strategien, Herstellung und Lieferkette, geistiges Eigentum und weitere Firmenfunktionen verwaltet“, wird Mark Altmeyer, Präsident und Chief Commercial Officer von Axovant Sciences, in der Mitteilung zitiert. „Unsere Präsenz in Basel bedeutet den Zugang zu einem erstklassigen Talentpool, der für unseren weiteren Erfolg entscheidend sein wird.“ hs

report Life Sciences

Basler Forscher beschreiben neue T-Zellen für Krebsbehandlung

23.05.2017

report Life Sciences

Polyphor sichert weitere Finanzierung

19.05.2017

report ICT

Dr. med. App – Digitale Transformation in den Life Sciences

30.11.2016

Die Zukunft gehört den datengetriebenen Therapieformen. Der Standort Basel nimmt die Herausforderung an und investiert in die sogenannte Precision Medicine.
Ein Text von Fabian Streiff* und Thomas Brenzikofer, erstmals erschienen am Freitag, 14. Oktober 2016 in der NZZ Verlagsbeilage „Swiss Innovation Forum“

Nun also auch die Life Sciences: Google, Apple und andere Technologie-Giganten haben den Gesundheitsmarkt entdeckt und bringen neben ihrer IT-Expertise viele Milliarden an Risikokapital mit. Völlig neue, datengetriebene und personalisierte Therapieformen – in einem Wort: Precision Medicine oder kurz PM – versprechen den Gesundheitssektor auf den Kopf zu stellen. Und wo es Veränderung gibt, da gibt es viel zu gewinnen. Zumindest aus Sicht der Investoren.

Anders sieht dies aus Sicht von Big Pharma aus. Für sie steht einiges auf dem Spiel. Gemäss Frank Kumli von Ernst & Young sind die Eintrittshürden bisher relativ hoch: «Wir bewegen uns in einem stark regulierten Markt, da dauert es länger bis Innovationen aufgenommen und durchgesetzt werden können.» Aber auch Kumli ist überzeugt, dass die Richtung vorgegeben ist und die Digitalisierung voranschreitet. Doch sieht er mehr Chancen als Gefahren: Die Schweiz und insbesondere Basel sei hervorragend positioniert, hier eine führende Rolle zu übernehmen. Mit der Universität Basel, dem D-BSSE der ETH, der FHNW, dem FMI und dem Universitätsspital Basel verfüge der Standort über starke Forschungsakteure. Zudem wird die gesamte Wertschöpfungskette in der Region abgedeckt, von der Grundlagenforschung, angewandten Forschung und Entwicklung, Produktion, Marketing und Vertrieb bis hin zu den Regulatory Affairs sowie entsprechenden IT-Kompetenzen. Zu den wichtigsten Treibern der digitalen Transformation hin zur Precision Medicine gehören digitale Tools, die ein Echt- zeit-Monitoring von Patienten – sogenannte Feedback Loops – ermöglichen. Die Kombination solcher Daten mit Informationen aus klinischen Tests und Genanalysen sind der Schlüssel zu neuen biomedizinischen Erkenntnissen und damit zu Innovationen.

Landesweit einheitliche Datenorganisation
Ähnlich wie im 16. Jahrhundert die Erfindung des Mikroskops das Feld zur modernen Medizin eröffnete, werden Daten und Algorithmen die Basis liefern, den künftigen Patienten sehr viel präzisere und kostengünstigere medizinische Lösungen und Therapien anbieten zu können. Derzeit besteht die Krux jedoch noch darin, dass die Daten an verschiedenen Orten in unterschiedlichen Formaten und meist in geschlossenen Systemen vorhanden sind. An diesem Punkt setzt das Projekt unter Leitung von Professor Torsten Schwede am Swiss Inrecistitute of Bioinformatics (SIB) an.

Im Rahmen der nationalen Initiative «Swiss Personalized Health Network» soll von der Leitungszentrale im Stücki Science Park Basel aus eine landesweit einheitliche Datenorganisation zwischen Universitätsspitälern und Hochschulen aufgebaut werden. Der Kanton Basel-Stadt hat eine Anschubfinanzierung für das Projekt bereits beschlossen. Durch die Standardisierung von Datenstrukturen, Semantik und Formaten zum Datenaustausch dürfte die klinische Forschung in der Schweiz – sowohl an Hochschulen sowie in der Industrie – deutlich an Qualität und Attraktivität gewinnen. An Interesse auf der Basis solcher klinischer Daten zu forschen und neue Geschäftsideen zu entwickeln, mangelt es nicht. Dieses zeigte sich anlässlich von Day One, einer von der Innovationsförderung und Standortpromotion BaselArea.swiss mitgetragenen und von der Precision Medicine Group Basel Area organisierten Workshop-Veranstaltung anlässlich der Basler Life Science Week.

Über 100 Experten fanden sich ein, um über zukünftige Geschäftsmodelle zu brüten. Insgesamt 14 Projekt- und Geschäftsideen wurden dabei näher in Betracht gezogen. Diese reichten von der Automatisierung der bildgestützten Diagnose über die Entwicklung von Sensoren in Wearables bis hin zu Smartphone-Apps zur besseren Involvierung von Patienten in den Therapieprozess.

Auch Big Pharma ist dabei
«Die Diversität der Projektideen war erstaunlich und zeigt, dass die Schweiz ein guter Nährboden sein kann für den nächsten Innovations- schritt in der Biomedizin», sagt Michael Rebhan von der Novartis und Founding-Mitglied der Precision Medicine Group Basel Area über- zeugt. Darauf will die Precision-Medicine-Initiative jetzt aufbauen: «Trotz der Innovations- kraft, die wir in den einzelnen Disziplinen sehen, kommt Precision Medicine insgesamt nur lang- sam voran. Die Fortschritte sind in ihrer Gesamtheit noch unzureichend, weshalb wir enger zusammenarbeiten und unsere Anstrengungen integrieren müssen. Es braucht deshalb eine Plattform, wo Experten aus verschiedenen Disziplinen zusammenkommen», ist Peter Groenen von Actelion, ebenfalls Mitglied der Precision Medicine Group Basel, überzeugt.

Das Interesse der Industrievertreter an einem Open Innovation Hub mit einem Precision Medicine Lab als zentralem Bestandteil ist denn auch gross. Hier sollen die Projekte der Stake- holder in einem offenen und kollaborativen Umfeld vorangetrieben werden können. Darüber hinaus soll der Hub Talente und Projektideen von ausserhalb der Region Basel anziehen. Das neuartige Innovationsökosystem rund um Precision Medicine steht noch am Anfang. In einer Pilotphase sollen anhand erster konkreter Anwendungsfälle die Funktionen und Dimensionen des PM Hubs präzisiert werden, um danach die richtigen Partner für den Aufbau des gesamten Hubs zu identifizieren.

Die digitale Transformation voran mitgestalten
Die vielversprechendsten Projekte finden schliesslich Zugang zu einem Accelerator-Programm, wo sie weiter beschleunigt werden und in den bestehenden Innovationsinfrastrukturen wie Basel Inkubator, Technologiepark Basel oder Switzerland Innovation Park Basel Area zu einem Unternehmen reifen können.

Fazit: Die Region Basel schafft die Voraussetzungen, die digitale Transformation in den Life Sciences an vorderster Front mitzugestalten und damit diesen wichtigen Industriezweig für die Schweiz weiter auszubauen sowie für die Ansiedlung neuer Unternehmen attraktiv zu halten.

 

* Dr. Fabian Streiff leitet die Standortförderung des Kantons Basel-Stadt.

report Micro, Nano & Materials

CRISPR Therapeutics erwirbt Lizenz für Nanotechnologien

09.05.2017

report Life Sciences

Polyphor schliesst Finanzierungsrunde ab

09.05.2017