Innovation Report

 
report Life Sciences

“Basel has all the ingredients required to host a successful company”

11.06.2018

The physician and pharmacologist Nicole Onetto is a member of the Board of Directors at the Basilea Pharmaceutica AG. In the Interview that was featured in Basilea’s annual report she talks about current challenges in oncology.

Great strides are being made in the long-term treatment of oncology patients. As an oncology expert, what do you find to be the most important advancements in the industry?

Nicole Onetto: We see spectacular results in terms of long-term survival in quite a few diseases where, less than ten years ago, there were no new treatments available. And for many forms of cancer, where previously we had only access to traditional therapies such as surgery, radiation therapy and chemotherapy, we have been able to take advantage of the new molecular understanding of cancer to personalize the treatment for each patient. This has facilitated the development and the utilization of targeted therapies associated with superior efficacy and reduced toxicity compared to traditional treatments. Finally, in the last few years, we have been able to harness the potential of the immune system to develop new therapeutic approaches which stimulate our own immune defenses to control cancer growth.

What do you see as the next major treatment improvements that may be achieved in the short and mid-term?

Definitely the further development of immune therapies for cancer patients seems more and more important. These new modalities will need to find the right place in the management of patients and will have to be used in combination with more traditional therapies. The cost-effectiveness of these innovative technologies will also need to be evaluated. Another very important topic will be minimizing toxicity of treatments and avoiding over-treatment.

How can companies succeed in clinical development?

With a more personalized approach to cancer treatment, new opportunities do exist to develop drugs associated with high efficacy in well-defined patient populations. However, drug development will always require patience, perseverance and scientific rigor. Many challenges still remain in treating cancer patients, despite the important progress that has been made. Among others issues, drug resistance is a significant hurdle and continues to be in the focus of Basilea. For patients with resistant diseases, not so long ago, the only possible approach was to change to a new drug, often a new chemotherapy. Now we have gained more insight into the mechanisms of resistance. In addition, many researchers all over the world are investigating the best ways to circumvent treatment resistance. Other important factors are collaborations between academia and the private sector such as companies like Basilea, to develop new innovative drugs to benefit patients.

How can this be supported?

The use of biomarkers to help choose the most appropriate treatment regimen and to select the patients with the highest probability of response to treatment has and will continue to have a major impact on the development of new cancer agents. Biomarker data are key to the design of development plans of new drugs and to go/no go decisions. These data are now often incorporated in the approval process and subsequent commercialization of new drugs. This approach, based on scientific evidence to select new drugs, is one of the major advances that are currently transforming the research and development process as well as clinical study methodology.

Do you see advantages for Basilea being located in Basel?

Basel has all the ingredients required to host a successful company: a vibrant research community, an international reputation of excellence in the pharma industry, a pool of talented people and a strong and stable economy. Basel is a leading life-science hub with the presence of an excellent university, the headquarters of established large pharmaceutical companies and many start-ups and innovative ventures. There are many similarities between Basel and the few well established biotechnology hubs in Europe and North America. This favorable environment has already helped Basilea build a very strong company and should continue to support its further success. So I am delighted to have been elected by Basilea’s shareholders as a member of the board and look forward to playing an active role in the Basel biotech community.

report Precision Medicine

Three projects to start in the DayOne Accelerator

03.12.2018

report Innovation

Basel scientists receive European grant

30.11.2018

report Life Sciences

“IP protection is crucial for business and research”

08.05.2018

The patent law and attorney-at-law firm Vossius & Partner has been an important partner for BaseLaunch since the inception of the healthcare accelerator in 2016. They advise startups and big corporations alike on IP strategy. Philipp Marchand, patent attorney in the Basel office, advocates to take IP protection seriously.

BaselArea.swiss: Vossius & Partner maintains offices in Munich, Düsseldorf, Berlin and Basel. How do you fit in the Swiss and Basel ecosystem?

Philipp Marchand: Our firm was founded in the 1960s, coming to Basel eleven years ago. We have developed extensive and profound in-house knowledge concerning all IP issues and currently represent clients of all sizes from startup companies to big pharma in Switzerland and all over the world. Basel, as one of the most exciting life science locations, is of particular interest to our firm, which has one of the largest life science groups in Europe.

That sounds a bit sophisticated for startups.

Not at all. Our expertise obtained from representing clients of all sizes is a huge advantage for the startup sector. Moreover, instead of considering IP issues in an isolated way, we endeavour to take all possible future developments of our cases into account. This includes considering aspects from other jurisdictions since, even as a startup, you have to be aware of potential worldwide implications right from the start. In addition, we work with our attorneys-at-law to not only protect an invention but also to provide advice on related aspects such as freedom-to-operate.

You are also involved in BaseLaunch. Why is that?

We entered into a partnership with BaseLaunch in order to be closer to the startup community in Basel and Switzerland. We meet with each of the selected companies and review their IP situation free of charge in order to identify potential ways to optimize protection. We are excited to be able to offer our expertise more frequently to startups because we believe that they genuinely benefit from our full service approach. If they wish, later they can also enter into a client relationship and benefit from our experience right from the start. Of course, we then have to charge for our services. However, we offer a very reasonably priced system for startup companies and universities.

Why is it worth it to spend that money?

IP protection is crucial in all technological fields and in more than one aspect: It is the only reliable means to ensure that you can make a profit in the long run in different markets worldwide. For a startup company working in life sciences, or any other technological field, the most important type of IP is without a doubt a patent right. Specifically, only a patent grants you the monopoly to keep third parties from using your invention. However, further IP topics are relevant at an early stage, too. For example, a trademark protecting the company’s name or its products that are put on the market can be invaluable. Without trademark protection a startup may be forced to change its name or the names of their products, which can incur considerable costs.

What if a researcher has no intention to commercialize his or her invention right-away?

You might think keeping your invention a secret is a good idea. But in the meantime another bright mind might have the same idea and file for patent protection. Today all jurisdictions, including the US, follow the “first to file” principle, which means that you may have missed your chance and you could even be sued for infringement by a third party for using what you thought was your own invention. We therefore strongly encourage inventors and their employers to file for IP protection as early as possible.

What do I need to protect an invention?

We like to discuss everything with our clients in person to fully understand the potential product as well as its market and its customers. Afterwards, we draft the patent claims, which means that we define the invention and the technical problem that it solves. We file the application text with a patent office, usually with the European Patent Office (EPO) as part of the European Patent Organization of which Switzerland is also a member. One year after the first filing, we can prepare a subsequent application, which covers more than 150 states worldwide. The whole process until an application is granted can take more than five years.

Is there a difference in the importance of IP protection in the life sciences sector compared to other fields?

The biggest difference is the longer product life cycle for pharmaceutical products and the stricter regulations compared to, say, short-lived computer hardware. Also, due to the long product life cycles and general development costs in this sector, patent protection is the only way to ensure that the owner of the patent right benefits first from the invention. With a particular focus on the pharma sector, one should also mention the need to build-up an IP portfolio which not only protects, for example, a drug but also the process of making that drug, different formulations, dosage and treatment regimens and so on. At the same time, you should consider using additional IP rights such as trademarks. Take Bayer who invented Aspirin. The patent for the active ingredient acetylsalicylic acid has long expired, which means it may be widely produced and sold. However, the trademark still ensures that people specifically ask for Aspirin.

Are there any reasons to advise against filing for patent?

Yes, of course. There are situations where it may make sense to wait with filing a patent application until sufficient data and support has been collected. For example, it may not always be advisable to file a patent for a research platform to protect a screening method for active compounds. This is because patent applications are published 18 months after filing, meaning that everyone has access to the method. In this scenario, it may make sense to wait for the first molecule that emerges from your platform and file for product protection. However, such strategic aspects should always be discussed on a case-by-case basis.

Which misconceptions concerning IP do you sometimes encounter?

Most researchers are aware of IP protection but the execution could be better. One misconception includes the so-called grace period. There is no grace period in European patent law or in most other jurisdictions with the exception of the US, Japan and Canada. After you publicly disclose your own invention by writing or talking about it, you may not be able to obtain patent rights for your invention.

What may researchers reveal to their peer collaborators?

An invention is new if it does not form part of the state of the art, meaning it is not publicly known. Hence every discussion with a colleague or presentation of a poster at a conference prior to filing a patent application can potentially destroy the novelty. You may think that no one will find out. However, when it comes to money, third parties will leave no stone unturned. Of course, we are aware of the conflict between patent applications and the need to publish academic papers or give presentations. If you are unsure what to do: It is always better to come talk to us before a publication, a poster presentation or any other public disclosure, even on short notice.

 

About
Philipp Marchand heads the Basel office of Vossius & Partner. After graduating in biochemistry at the University in Frankfurt am Main and his PhD studies at a CNRS institute in Paris, he started his career as a patent attorney trainee with Vossius & Partner in Munich. After the bar examination, he transferred to Basel at the beginning of 2017. Recently, he started to pursue a doctorate in law at the University of Basel. Vossius & Partner is a leading patent law firm offering a full-service concept with legal competence from patent attorneys in every technological sector and attorneys-at-law qualified to practice not only in Europe and Switzerland, but also in the United States, Japan, Taiwan and Korea. The firm employs 55 patent attorneys and 20 attorneys–at-law in their offices in Munich, Düsseldorf, Berlin and Basel.

report Micro, Nano & Materials

CSEM to develop quantum sensors

30.10.2018

report Innovation

University of Basel and ETH Zurich co-found the Botnar Research Centre in Basel

19.09.2018

report Life Sciences

“I enjoy thinking about seemingly unsolvable problems”

13.03.2018

Andreas Plückthun continues his research where others stop: 40 employees work in his laboratory on protein engineering. Their results form the basis for three biotech companies: Morphosys in Munich, as well as Molecular Partners and G7 Therapeutics (today Heptares Zurich) in Schlieren. At the Antibody Congress 2017 in Basel, Andreas Plückthun told us why he remains true to his research.

Mr. Plückthun, you co-founded three biotech companies in three decades. How did this come about?

There was always this curiosity in the beginning to discover something – but never the wish to found a company. After we produced artificial antibodies and learned how to mimic the immune system, we established the company Morphosys. Then the next question arose: can we do this with other protein molecules and solve new problems? Out of this emerged Designed Ankyrin Repeated Proteins (DARPins) and a second company, Molecular Partners in Schlieren. The next challenge was then to stabilize receptors by means of protein engineering in order to develop better drugs for these points of attack. Based on this research, we founded the third company, G7 Therapeutics.

Who pushed ahead with the spin-offs each time?

For the first company, it was my research colleagues. I was the more sceptical of us three at the time. The other two companies were traditional spin-offs of my doctoral and postdoctoral students.

How are the companies doing today?

Morphosys now has 430 employees and recently celebrated its 25th anniversary. We also received the first FDA approval for an antibody that is now available on the market. This is one of the few companies that is still doing exactly what we once wrote in the business plan, and successfully too. Molecular Partners has 130 employees, several Phase 2 and 3 studies, and, like Morphosys, is listed on the stock exchange. G7 Therapeutics was sold to the British company Heptares, which in turn belongs to the Japanese company Sosei. In short: all companies are doing well. I don’t consider founding a company to be a particular achievement. The achievement is more that the companies are flourishing and bringing drugs to the market.

What changes have you noticed over the decades when it comes to founding a company?

The climate has changed completely. It was totally against the grain in Europe 25 years ago to found a biotech company. That’s why people went to California. At a symposium in America, I was once introduced as a researcher and a founder with the words; “He’s like us.” It was very common there for a long time to be both a researcher and an entrepreneur. That scepticism has since disappeared here, and founding a company is now judged positively. A venture capital scene has also developed since then. To be fair, I have to say that it helps investors if you’ve already successfully founded a company. The first deal is always the hardest.

You seem to be quite successful when it comes to founding companies. Did it ever tempt you to move to one of your companies?

It was never a question for me to leave the university. It’s an incredible privilege to be paid by the state to do crazy things. I always wanted to think about the next challenge at the university. Not having to account for quarterly profits is the only way forward in this context. In a company that conducts research with money from investors, you simply cannot undertake the type of risky and long-term projects that interest me. But I can say that thanks to the companies that are based on my research, I have repaid my dividends and created many jobs.

So you’ll continue to devote yourself to basic research. Can this be steered towards commercialization at all?

We’ve always wanted to solve a problem that seemed important enough to us. At some point in the research the question arises of how to use the results, what you can make of them. If we hadn’t commercialized the results, the problems would have simply stopped at an interesting point. We would have stopped halfway along. This is comparable to a coming up with blueprint for a computer and then not building it. By founding the companies, we could ensure that the projects would continue.

Is there any collaboration with industry within the scope of your research?

Direct collaboration between the pharmaceutical industry and our laboratory has never worked properly. Expectations and time horizons are very different. We develop new ideas and concepts that are often not exactly in keeping with large-scale pharmaceutical research. I don’t think anyone will feel offended when I say that the pharmaceutical industry is very conservative. We do have many contacts but hardly any collaboration. That being said, our spin-offs work very well with the pharmaceutical industry.

Which topics would you like to focus on next?

We are researching artificial viruses that cannot reproduce. The viruses should produce proteins directly in the body that are needed as therapeutic agents. This is so far away from practical implementation that such a project is only possible at a university. But I am absolutely convinced that it would have enormous significance if it worked. I couldn’t sit still if we didn’t at least try. We are once again trying to solve a problem in my laboratory that most people in the field would consider impossible to solve. That’s what makes me get up in the morning. I want to show how it works.

Learn more about Andreas Plückthun between basic research and biotech entrepreneurship at our event on 24 April 2018.

About
Andreas Plückthun (*1956) is a scientist whose research is focused on the field of protein engineering. He is the director of the department of biochemistry at the University of Zurich. Andreas Plückthun was appointed to the faculty of the University of Zurich as a Full Professor of biochemistry in 1993. Plückthun was group leader at the Max Planck Institute of Biochemistry , Germany (1985-1993). He was elected to the European Molecular Biology Organization (EMBO) in 1992, and named a member of the German National Academy of Science (Leopoldina) in 2003. He is cofounder of the biotechnology companies Morphosys (Martinsried, Germany), Molecular Partners AG (Zürich-Schlieren, Switzerland) and G7 Therapeutics (Zürich-Schlieren, Switzerland).

Interview: Annett Altvater and Stephan Emmerth, BaselArea.swiss

report Invest in Basel region

ETH investing 200 million in Basel campus

07.09.2018

report Innovation

Researchers discover new target for cancer treatment

23.08.2018

report

Meet the BaseLaunch Startups

11.03.2018

Six of the BaseLaunch startups recently started Phase II. They received either grants up to 250,000 Swiss francs or gained free of charge access to BaseLaunch laboratory and office space at the Switzerland Innovation Park Basel Area. Hear what the startups, the BaseLaunch team and selection committee members experienced in the first year. Find out more about what makes BaseLaunch unique.

The BaseLaunch accelerator is now open for applications for the second cycle. Entrepreneurs with a healthcare based project or a game-changing innovation in diagnostics, medtech or related field at the pre-seed or seed funding stage are invited to submit their applications to the program.

Following the application deadline on 14 May, promising projects will be admitted to the accelerator program for a period of 15 months. In phase I, the startups will benefit from the support of industry experts, office- and laboratory space free of charge and access to healthcare partners. After three months, they will be invited to present their idea to the selection committee. They will determine which promising startups will proceed to Phase II that runs for one year.

BaseLaunch is backed by five industry leaders — Johnson & Johnson Innovation, Novartis Venture Fund, Pfizer, Roche and Roivant Sciences. Other public and private partners such as KPMG and Vossius & Partner also support the initiative.

report Innovation

Basel researchers develop new approach to terpene syntheses

09.08.2018

report Invest in Basel region

Where the life sciences are concentrated

26.06.2018

report Life Sciences

"You should always have something crazy cooking on the back burner"

03.10.2017

When Jennifer Doudna gave her keynote at Basel Life in September, the auditorium in the Congress Center was packed. Susan Gasser, Professor of Molecular Biology at the University of Basel introduced Doudna as groundbreaking and extremely innovative. The Professor of Chemistry and of Molecular and Cell Biology at the University of California, Berkeley was on top of Gassers wish list for the Basel Life. The leading figure of what is known as the CRISPR revolution among scientists sat down with BaselArea.swiss during her stay in Basel to talk about her lab, flexible career paths and what makes a great researcher.

In your keynote you stated that you always did a lot of basic research. What changed for you and your lab after you published the CRISPR findings?

We are still doing deep dives into CRISPR technology. A lot of our work is about discovering new systems and looking at RNA targeting and integration. These things do not necessarily have to do with gene editing, but are our primal motivation. But there were quite a few changes. We started doing a lot more applied work. That led to all sorts of interesting collaborations with people that I would probably never had the chance to interact with in the past. It has been a great opportunity to expand both deeper and broader.

How do you manage to direct your students and postdocs in your growing lab?

I hire really good people that can focus on both innovative initiatives mixed with projects where a clearer outcome can be forecasted. I give them some guidance and then I cut them loose. We also build teams in the lab which works really effectively. I do not always get it right, but when I do, amazing science happens.

You live in an area where entrepreneurship seems to be some kind of lifestyle. What is your view on the environment in Europe for both doing research and creating companies compared to the benchmark California?

There are some interesting – probably cultural – differences in the way people approach science. At Berkeley, a lot of our students are planning to go into academia. And a lot of students in California not only want to go into industry, but want to start their own company or join a startup. From talking to my Swiss colleagues, it sounds like many students in Switzerland are uncomfortable with that. They want to go to a large company and get a nice salary. Nothing wrong with that. Still, I think that it is good to encourage students to take a risk and to try something that is outside of their comfort zone.

How does that work out in Berkeley?

Two of my students started companies with me directly based on their work in the lab. One company creates new technologies that will be useful therapeutically or in agriculture. In the other case, we are figuring out how to deliver gene editing to the brain. Both students became CEOs and were able to do all the steps it takes to build their company, deal with the legal stuff and funding, conceptualize the business plan and the science. They had to hire people, build a team, and make deals. I always tell those students, I could never do their job.

How do you motivate students to take that step anyway?

I think one of the reasons that we have a lot of entrepreneurship in the bay area is because Silicon Valley is around the corner. That kind of mindset permeates everything. My kid sees young entrepreneurs who are not that much older than a teenager building the next robotics and AI companies. Granted, there is lots of failure for every single success. But teenagers see a successful person and feel motivated to give it a shot.

How can a culture like that be created?

You cannot replicate Silicon Valley culture. But I think you can create a culture that values risk taking and that validates people who do things that are not traditional. If you try something and it does not work out you should not be penalized. Instead, you should be able to go back and get the job at the big corporation. If we encourage our students to see all those options from academia to corporation and startup, they realize that they do not necessarily have to commit themselves to one path for their entire career.

Were you ever tempted to switch sides?

I toyed with it. Back in 2009, I left my job at Berkeley and joined Genentech as a Vice President of basic research. I only lasted a couple of months.

Why was that?

From the outside, it seemed like an exciting way to take my research in a much more applied direction. When I was inside I realized I was not playing to my own strengths. Instead, I realized what I am good at doing and what I really like. It all boiled down to creative, untethered science. I love working with young people and I like creating an environment where they can do interesting work. Not that I could not have done that with Genentech, but it was very different. The process was super painful, but also valuable. I returned to Berkeley and decided to go with the reason why I am in academia: crazy, creative projects that might not be clinically relevant but are interesting science. That was when I decided to expand the work on CRISPR. Had I not made the foray to Genentech and then back to Berkeley, I might not have done any of the CRISPR work.

One topic you are dealing with is the unsolved patent struggle about CRISPR Cas9. Does this effect your work?

I try to look at it very pragmatically. Because ultimately I am an educator. You could say this is my own education. I have learned a huge amount about the patent and legal process, some of it unpleasant. Someday I will write a book about that.

Another jury might be more distinctive on your achievements: You are a hot candidate for the Nobel Prize. How does that make you feel?

I try not to think about it too much. Yet, I feel very humbled. It makes me take a step back and ask myself: What is the purpose of prizes like that? I think they highlight science, the advances that are made and how these might influence people’s lives positively. I did not chose this job to win prizes, but because I really love science.

Is that enthusiasm for science what makes a great researcher – or is there a magic formula?

I think it is a combination of willingness to try new things coupled with a willingness to listen to people. I have seen these extremes both in myself and in my lab. I have real maverick students with creative ideas. But they can never follow a protocol because they are sure they will do better. This often does not lead to good science. The flip is true as well: If you always just follow protocols and never take a step out of the procedures you also do not create the most interesting science. We usually set up one line of experiments that are following a path and where we will surely get some data that are of interest for us. The second project is something that is of interest to the student. This mixture often leads to the best science.Let’s face it: You do not get rich in academic science. The joy in science is the freedom of making discoveries, of finding things out. I tell students: ‘If you stay in academic science, play with that.’ You should always have something a bit crazy cooking on the back burner. That is what makes it fun.

Interview: Alethia de León and Annett Altvater, BaselArea.swiss

report BaselArea.swiss

BaselArea.swiss Presents the DayOne Acceleration Program Supported by Fondation Botnar

29.05.2018

report Life Sciences

The Revival of Antibiotic Research

07.05.2018

report Precision Medicine

"In Switzerland, we often sell promising technologies too early"

05.09.2017

Ulf Claesson is a "serial entrepreneur". During the past 25 years, he has set up companies that have gone on to become firmly established in the market. In 2012, he joined Clinerion as CEO and shareholder. Since then, the company has positioned itself in the medical data field and recently entered into a partnership with British company Cisiv. Clinerion's software helps recruit patients for clinical trials run by major pharmaceutical companies – in real time. But the competition never sleeps. A growing number of competitors is now appearing, especially in the USA where there is no shortage of risk capital. In this interview for the Innovation Report, Claesson explains how the Basel-based healthtech company plans to maintain its leadership position.

Interview: Thomas Brenzikofer

Mr Claesson, what was behind your decision to get on board with Clinerion?

Ulf Claesson: Clinerion was originally an IT platform with a complicated name. Its founders hit upon the idea of building a large data hub for the pharmaceutical and healthcare industries. That was quite an ambitious idea. I reckon that the WHO or the Bill and Melinda Gates Foundation could possibly manage it. But a small company in Basel? As an IT person, I quickly saw how good the core technology was.  What wasn't clear, however, was the problem that the technology was going to solve. So we started working on that and felt our way slowly but surely towards the patient recruitment use case. Today, we are the only company in the world able to identify in real time from millions of patient data records those patients who are suitable for a specific clinical trial.

So you have aligned the company with a particular niche?

Yes, absolutely. When you are building a company, you must concentrate on solving a genuine problem. Our technology gives the customer clear benefits. Finding patients usually takes months, sometimes years. We cut this to weeks, or less. We ensure that a pharma company, hospital or contract research organisation already before the start of a clinical trial knows exactly where candidate patients are located and exactly how many there are. Depending on the goal, the study protocol can then be optimised as required. Because we avoid guesswork and identify genuine patients who meet the study criteria in this very moment, the study design is robust and risk is minimised. Not only that, but a study sponsor knows exactly where and how many of his "sites" he must place. Real-time information is particularly valuable for this. As soon as I activate a study protocol, the doctors involved are notified and can call their patients in.

Is it easy to convince hospitals to collaborate with Clinerion?

We were rather naive about this at first. From an IT perspective, it makes sense to do everything in the cloud. That is exactly what we tried to do, but most people were negative about it. We also found that attitudes to data protection, as well as the regulations themselves, vary considerably from one country to the next. These factors make a cloud solution virtually impossible to implement. Today, we are installing a hardware appliance within a hospital's IT infrastructure. The data therefore remains exactly where it is collected and it is as secure as all other patient data. We can also only access consolidated and aggregated meta information, which earns us the trust of decision-makers and the people using the system.

What exactly motivates hospitals to disclose their data?

We all basically share the same objective of providing relevant patients with drugs as soon as possible. We play a role in achieving this. The university hospitals are carrying out research to some extent for their own interests. We help them to carry out their internal studies more quickly. The pharmaceutical companies remunerate the hospitals for each patient who participates in a study. The doctors feel that participating in interesting studies is important. In our experience, the number of studies that hospitals are offered increases significantly as soon as they start working with us.

How many patients do you currently have access to?

We have access to 35 million patients via the hospitals. And we certainly need that many. The numbers can start dwindling rapidly depending on the symptoms you are searching for.

You operate mainly in emerging markets such as Brazil and Turkey.  Why is that?

With the exception of the UK, Europe is more cautious about taking part in clinical trials. By 2020, Turkey expects to have increased the EUR 50 million turn-over in clinical trials in 2014 to EUR 1.5 billion. In Brazil, they are even changing the law to make it easier for pharmaceutical companies to carry out more studies in the future. In clinical trials, it is important for all participating patients to receive the same standard of care. Participants in trials might therefore receive better care than usual. This applies to some countries in Eastern Europe, for example. For some patients, this can be an incentive.

Does your data acquisition prioritise emerging markets?

No, not exclusively. We are also well positioned in a number of European countries. But we can certainly do better. We would also like to expand our presence in India and Taiwan, for example. Great Britain is a key focus for us and our partnership with Cisiv will help here. We recently entered into a partnership with this UK company. Cisiv’s platform complements our screening programme perfectly.

It sounds like a data contest. How close is your main competition?

There are three competitors. But we are the only ones able to provide real-time results. Our competition in the USA, however, has access to much more capital. At the last investment round, one of our competitors raised 32 million dollars.

Do you find it difficult to compete with that?

It is certainly difficult for an ICT start-up in Switzerland to obtain those kinds of amounts. We are not completely dependent on external investment, however. We have a very loyal shareholder base and have sufficient funding, even though we are still a long way from being profitable.

Could a sale be on the cards?

Our vision is to provide patients with medicines. If we see that we can achieve this goal more quickly, we would be willing to consider it. But selling is not currently under consideration. I have already founded a number of companies. Some were sold too early, even though we could still have helped them progress through one or more growth phases. I am convinced that Clinerion will succeed in that regard.

Do you consider the lack of growth financing to be a problem for the Swiss start-up scene?

Most certainly. Good technologies tend to be sold off too early because their owners cannot find the money they need for the next major milestone, typically for the global expansion phase.  

What do you suggest?

Imitating Silicon Valley will get us nowhere. Also because costs there are unacceptably high at the moment. We really need to focus on our strengths. Just to give you one example: twice as many startups are established at ETH Zurich each year than at UC Berkeley. When universities foster a supportive environment, a start-up community develops all on its own. The students I meet at ETH are ambitious and full of energy. I also note, however, that many Swiss students prefer the security of working in a large corporation. We need a greater willingness to accept risk. We need to work on it.

How do you see innovation hub Basel?

We have good access to the sector here, and we can also recruit staff from neighbouring Germany. The labour market is therefore less competitive than in Zurich for example. We feel right at home here in Basel.

Interview: Thomas Brenzikofer and Annett Altvater

About Ulf Claesson
Ulf Claesson studied production technology at Chalmers University in Gothenburg and also gained a management degree at the University of St. Gallen. He worked for IBM and Hewlett-Packard, established spin-offs for various companies, and founded his own start-ups. In his lecture on "Technology Entrepreneurship" he passes on his experience as a "serial entrepreneur" to students at ETH. He is a member of the board of directors of various companies, the Foundation Board Director of the AO Foundation, and has been the CEO of Clinerion since 2012.

report Innovation

Artificial mole acts as early warning system for cancer

19.04.2018

report Innovation

Basel researchers cultivate cartilage from stem cells

17.04.2018

report BaselArea.swiss

In Basel an Innovation Hub for Precision Medicine is Born

24.01.2017

A stakeholder group of healthcare experts from the life sciences industry and research initiated by BaselArea.swiss launches DayOne in close collaboration with Canton Basel-Stadt.

On Monday, 16 January 2017, decision makers from industry, university and the healthcare sector gathered in the Volkshaus, Basel, at the invitation of Christoph Brutschin to attend the launch of DayOne - the Innovation Hub for Precision Medicine. The initiative was dreamed up by BaselArea.swiss, the promoters of innovation and inward investment in the region, together with a core team of industry experts, and in his opening speech the Director of Economic Affairs for Canton Basel-Stadt made it clear what the initiative is all about: namely, the next development stage in the life sciences, where the Basel region should remain a prominent player. That increasing digitalization in the healthcare industry will not only provide for disruption, but also offers huge potential, as long as the right course is set, was also the main theme of the evening.

An introduction to the topic was provided by Peter Grönen, who - together with other industry experts – is one of the initiators of DayOne. The Head of Translational Science at Actelion explained why the linear innovation paradigm - in which tests for clinical relevance are only conducted late on in the process - inevitably ends in the notorious Valley of Death when it comes to the issue of precision medicine. The patient, says Grönen, has to take centre stage in research and development today - and remain included in all interactions. Groenen concluded his presentation with the observation that all the components are actually present in the Basel region to build a novel innovation ecosystem in which the various skills and disciplines operate not downstream of one another but work in constant collaboration.

And it is precisely this that is also the main driver of the DayOne initiative. The projects were then presented that are currently being pursued in the Basel region and are likely to enjoy an added boost as a result of the Innovation Hub in Precision Medicine. Torsten Schwede from the University of Basel reported on the Data Coordination Centre of the Swiss Personalized Health Network (SPHN), which is aimed at making all patent data of Switzerland’s university hospitals interoperable and accessible for research purposes. Christof Kloepper, Managing Director of BaselArea.swiss, presented BaseLaunch, the accelerator for healthcare ventures that will be officially launched at the end of February. And Laurenz Baltzer from Karger presented an ambitious scientific publication project on the subject of digital biomarkers.

Following these presentations, it was left to Frank Kumli, a co-initiator of DayOne from Ernst & Young, to show what the hub involves and how it fits into the innovation landscape of the region and offers added support.

report Micro, Nano & Materials

Millions of EU funding for two researchers from the University of Basel

12.04.2018

report Supporting Entrepreneurs

Innosuisse Roadshow in Basel – new team, fundings and open questions

29.03.2018

report Life Sciences

“The Basel region should not simply be part of the transformation, but should be helping t...

07.12.2016

Dr Falko Schlottig is Director of the School of Life Sciences at the University of Applied Sciences and Arts, Northwest Switzerland (FHNW), in Muttenz. He advises start-up companies in the life sciences and has founded start-ups himself.

In our interview, he explains how the School of Life Sciences would like to develop, why close interdisciplinary collaboration is so important and what future he foresees for the health system.

You come from industry and have also been engaged in start-ups yourself. Is it not atypical now to work in the academic field?
Falko Schlottig*:
If it were atypical, we would be doing something wrong as a university of applied sciences. Many of the staff at the FHNW come from industry. That’s important, because otherwise we could not provide an education that qualifies students for their profession and because through this network we can drive applied research and development forwards. With our knowledge and know-how we can make a significant contribution to product developments and innovation processes.

Is this how the FHNW differs from the basic research done at universities?
It’s not about making political distinctions, but about a technical differentiation. As a university of applied sciences, we are focused on technology, development and products. The focus of universities and the ETH lies in the field of basic research. Together this results in a unique value chain that goes beyond the life sciences cluster of Northwest Switzerland. This requires good collaboration. At the level of our lecturers and researchers, this collaboration works outstandingly well, for example through the sharing of lectures and numerous joint projects. On the other hand, there is still a lot of potential in the collaboration to strengthen the life sciences cluster further, for instance in technology-oriented education or in the field of personalized health.

Does “potential” mean recognition? Or is it a question of funding?
Neither nor! The distinction between applied research and basic research must not become blurred – also from the students’ perspective. A human resources manager has to know whether the applicant has had a practice-oriented education or first has to go through a trainee programme. It’s a question of working purposefully together in technology-driven fields even better than we do today in the interest of our region.

Are there enough students? It’s often said there are too few scientists?
Our student numbers are slightly increasing at the moment, but we would like to see some more growth. But the primary focus is on the quality of education and not on the quantity. What is important for our students is that they continue to have excellent chances on the jobs market. Like all institutions, however, we are feeling the current lack of interest in the natural sciences. For this reason, we at the FHNW are committed in all areas of education to subjects in the fields of science, technology, engineering and mathematics - or STEM subjects.

You have now been head of the School of Life Sciences at the FHNW for just over a year. What plans do you have?
We want to remain an indispensable part of the life sciences cluster of Northwest Switzerland. We also want to continue providing a quality of education which ensures that 98 percent of our students can find a job after graduation. In concrete terms, this means that we keep developing our teaching in terms of content, didactics and structure and follow the developments of the industrial environment and of individualization with due sense of proportion. In this respect, we’ve managed to attract people with experience in the strategic management of companies in the industrial field and people from institutions in the healthcare and environment sectors to assist us on our advisory board.
In research, we will organize ourselves around technologies based on our disciplinary strengths and expertise in the future and will be even more interdisciplinary in our work. We will be helped by the fact that we are moving to a new building in the autumn of 2018 and will have one location instead of two. In terms of content, we will establish the subject of “digital transformation” as an interdisciplinary field in teaching and research with much greater emphasis than is the case today. Finally, we should not simply be part of this transformation, but should be helping to shape it.

Apropos “digital transformation”, IT will also become increasingly important for natural sciences. Will the FHNW train more computer scientists?
Here at the School of Life Sciences we are successfully focused on medical informatics; the FHNW is training computer scientists in Brugg and business IT specialists in Basel. But we also have to ask ourselves what a chemist who has attended the School of Life Sciences at the FHNW should also offer in the way of advanced IT know-how in future – for example in data sciences. The same applies to our bioanalytics specialists, pharmaceutical technology specialists and process and environmental engineers. Nevertheless, natural science must remain the basis, enriched with a clear understanding of data and related processes. Conversely, an IT specialist who studies with us at the School of Life Sciences also has to come to grips with natural science issues. This knowledge is essential if you want to find a life sciences job in the region.

Throughout Switzerland – but also especially in the Basel region – there is a lot of know-how in bioinformatics. But from the outside, the region is not perceived as an IT centre. Should something not be done to counteract this perception?
We do indeed have some catching up to do in the life sciences cluster of Northwest Switzerland. The important questions are what priorities to focus on and how to link them up. Is it data mining – which is important for the University of Basel and the University Hospital? Or is it the linking of patient data with the widest variety of databases in order to raise cost-effectiveness in hospitals, for example? Or does the future lie in data sciences and data visualization to simplify and support planning and decision-making, which is one of the things we are already doing at the School of Life Sciences? The key issue is to know what data will serve as the basis of future decision-making in healthcare. Here it is also a question of who the data belongs to and both how and by whom the data may be used. This is one of the prerequisites for new business models. Since we are engaged in applied research, these issues are just as important for us as they are for industry. This hugely exciting discussion will remain with us for some years to come.

The School of Life Sciences at the FHNW covers widely differing areas such as chemistry, environmental technology, nanoscience and data visualization – how does it all fit together?
It is only at first glance that these areas seem so different – their basis is always natural science, often in conjunction with engineering science. The combining of our disciplines will be even better when they are all brought together in 2018, at the very latest. You can see it already, for example, in environmental technology: at first glance, you wonder what it has to do with bioanalytics, nanoscience or computer science. But the School of Life Sciences is strong in the field of water analysis and bioanalytics, and one of the biggest problems at the moment is antibiotic resistance. To find solutions here, you need a knowledge of chemistry, biology, analytics, computer science and also process engineering know-how. As from 2018/19 we will have a unique process and technology centre in the new building, where we will be able to visualize all the process chains driving the life sciences industry today and in the future – from chemistry, through pharmaceutical technology and environmental technology to biotechnology, including analytics and automation.

You’ve been - and still are - involved in start-ups. Will spin-offs from the School of Life sciences be encouraged in future?
We are basically not doing badly today when you compare the number of students and staff with the number of start-ups. But we do like to encourage young spin-off companies; at our school, start-ups tend to spring from the ideas of our teaching staff. Our Bachelor students have hardly any time to devote themselves to starting up a company. On the other hand, entrepreneurial thinking and engagement form part of the education provided at the School of Life Sciences. After all, our students should also develop an understanding of the way a company works. A second aspect is entrepreneurial thinking in relation to founding a company. The founding of a start-up calls for flexibility and openness on our part: How do we deal with a patent application? Who does it belong to? How are royalties arranged? Our staff have the freedom to develop their own projects. Our task is to define the necessary framework conditions. We already offer the possibility today of a start-up remaining on our premises and continuing to use these facilities. We have reserved extra space for this in the new building. We also make use of all the opportunities that the life sciences cluster of Northwest Switzerland offers today. This includes, for example, the life sciences start-up agency EVA, the incubator, Swiss Biotech, Swissbiolabs, the Switzerland Innovation Park Basel Area, BaselArea.swiss and also venture capitalists, to name just a few. We are well-networked, and here too we are doing what we can to help foster the development of our region

Why do you think it is apparently so difficult in Switzerland to establish a successful start-up?
There are two factors in Northwest Switzerland that play a part: a very successful medium-sized and large life sciences industry means the hurdles to becoming independent are much higher. When you found a start-up, you give up a secure, well-paid job and expose yourself to the possible financial risks associated with the start-up. The second big hurdle is funding, especially overcoming the so-called Valley of Death. Compared with the second step, it is easy to obtain seed capital. Persevering all the way to market with a capital requirement of between one and five million francs is very difficult.

That should change with the future fund.
It would of course be fantastic if there were a future fund of this kind to provide finance of between one and two million francs. This would finance start-up projects for two or three years. In this respect, it is incredibly exciting, challenging and moving to see the whole value chain from research to product in use, to be familiar with networks and to be involved. Today this is almost only possible with a start-up or a small company. But in the end, every potential founder has to decide whether he or she would prefer to be a wheel or a cog in a wheel.

Will the healthcare sector look dramatically different in five or ten years?
Forecasts are always difficult and often wrong. The big players will probably wait and see how the market develops. The healthcare sector may well look different in five to ten years, but not disruptively different. We will see new business models, and insurers will try exploring new avenues. This may lead to shifts. At the moment we are experiencing the shift from patient to consumer. On the product side, the sector is extremely regulated, so it is not easy to launch a new and innovative product onto the market. In my view, many regulations inhibit innovation and do not always lead to greater safety for the patients, which is actually what they should do.

How could this transformation be kick-started?
I believe that we at the University of Applied Sciences in Northwest Switzerland have a major contribution to make here. For example, we take an interdisciplinary and inter-university approach collaborating on socio-economic issues based on our disciplinary expertise within strategic initiatives. In this way we are trying to our part to help find solutions or answers. Switzerland and our region in particular have huge potential in this pool of collaboration. This now needs to be exploited.

Interview: Thomas Brenzikofer and Nadine Nikulski, BaselArea.swiss

*Prof. Dr. Falko Schlottig is Director of the School of Life Sciences at the University of Applied Sciences and Arts Northwestern Switzerland (FHNW) in Muttenz. He has many years of experience in research and product development and has held a variety of management positions in leading international medical device companies. Falko Schlottig has also co-founded a start-up company in the biotechnology and medical devices sector.

He studied Chemistry and Analytical Chemistry. He holds an Executive MBA from the University of St Gallen.

 

report Life Sciences

Basel scientists make cancer breakthrough

22.03.2018

report Invest in Basel region

Technologiepark Basel verdoppelt seine Fläche

19.03.2018

report ICT

Dr App – Digital transformation in the life sciences

30.11.2016

The future belongs to data-driven forms of therapy. The Basel region is taking up this challenge and investing in so-called precision medicine.
An article by Fabian Streiff* and Thomas Brenzikofer, which first appeared on Friday, 14 October 2016, in the NZZ supplement on the Swiss Innovation Forum.

So now the life sciences as well: Google, Apple and other technology giants have discovered the healthcare market and are bringing not only their IT expertise to the sector, but also many billions of dollars in venture capital. Completely new, data-driven, personalized forms of therapy – in short: precision medicine – promise to turn the healthcare sector on its head. And where there is change, there is a lot to be gained. At least from the investor’s point of view.

From the Big Pharma perspective, things look rather different. There is quite a lot at stake for this industry. According to Frank Kumli from Ernst & Young, the entry hurdles have been relatively high until now: “We operate in a highly regulated market, where it takes longer for innovations to be accepted and become established.” But Kumli, too, is convinced that the direction of travel has been set and digitalization is forging ahead. But he sees more opportunities than risks: Switzerland - and Basel in particular - is outstandingly well-positioned to play a leading role here. With the University of Basel, the Department of Biosystems Science and Engineering ETH, the University of Applied Sciences Northwest Switzerland, the FMI and the University Hospital Basel, the region offers enormous strength in research. It also covers the entire value chain, from basic research, applied research and development, production, marketing and distribution to regulatory affairs and corresponding IT expertise. The most important drivers of digital transformation towards precision medicine include digital tools that allow real-time monitoring of patients – so-called feedback loops. The combination of such data with information from clinical trials and genetic analysis is the key to new biomedical insights and hence to innovations.

Standardized nationwide data organization
In rather the same way that the invention of the microscope in the 16th century paved the way to modern medicine, so data and algorithms today provide the basis for offering the potential for much more precise and cheaper medical solutions and treatments for patients in the future. At present, however, the crux of the problem is that the data are scattered over various locations in different formats and mostly in closed systems. This is where the project led by Professor Torsten Schwede at the Swiss Institute of Bioinformatics (SIB) comes into play.

As part of the national initiative entitled Swiss Personalized Health Network, a standardized nationwide data organization is to be set up between university hospitals and universities under centralized management at the Stücki Science Park Basel. Canton Basel-Stadt has already approved start-up funding for the project. The standardization of data structures, semantics and formats for data sharing is likely to substantially enhance the quality and attractiveness of clinical research in Switzerland – both at universities and in industry. There is no lack of interest in conducting research and developing new business ideas on the basis of such clinical data. This was apparent on the occasion of Day One, a workshop event supported by BaselArea.swiss for the promotion of innovation and economic development and organized by the Precision Medicine Group Basel Area during Basel Life Sciences Week.

More than 100 experts attended the event to address future business models. Altogether 14 project and business ideas were considered in greater depth. These ranged from the automation of imaging-based diagnosis through the development of sensors in wearables to smartphone apps for better involvement of patients in the treatment process.

Big Pharma is also engaged
“The diversity of project ideas was astonishing and shows that Switzerland can be a fertile breeding ground for the next innovation step in biomedicine,” Michael Rebhan from Novartis and founding member of the Precision Medicine Group Basel Area says with complete conviction. The precision medicine initiative now aims to build on this: “Despite the innovative strength that we see in the various disciplines, precision medicine overall is making only slow progress. The advances that have been made are still insufficient on the whole, which is why we need to work more closely together and integrate our efforts. A platform is therefore required where experts from different disciplines can get together,” says Peter Groenen from Actelion, likewise a member of Precision Medicine Group Basel.

There is also great interest among industry representatives in an Open Innovation Hub with a Precision Medicine Lab as an integral component. The idea is that it will enable the projects of stakeholders to be driven forward in an open and collaborative environment. In addition, the hub should attract talents and project ideas from outside the Basel region. The novel innovation ecosystem around precision medicine is still in its infancy. In a pilot phase, the functions and dimensions of the precision medicine hub will be specified more precisely based on initial concrete cases, so that the right partners can then be identified for establishing the entire hub.

Leading the digital transformation
The most promising projects will finally be admitted to an accelerator programme, where they will be further expedited and can mature into a company within the existing innovation infrastructures, such as the Basel Incubator, Technologiepark Basel or Switzerland Innovation Park Basel Area.

Conclusion: the Basel region creates the conditions for playing a leading role in helping to shape digital transformation in the life sciences sector and hence further expanding this important industrial sector for Switzerland and preserving the attractiveness of the region for new companies seeking a location to set up business.

* Dr Fabian Streiff is Head of Economic Development with Canton Basel-Stadt

report Micro, Nano & Materials

Universität Basel feiert Kavli-Preisträger Christoph Gerber in Liestal

12.03.2018

report Life Sciences

SpiroChem building on successful year

07.03.2018

report Production Technologies

Production Technologies – der neue Bereich von BaselArea.swiss

02.11.2016

Derzeit reicht es nicht aus, einfach zu produzieren. Unternehmen müssen zu geringeren Kosten produzieren, sparsam mit Ressourcen umgehen, die Wünsche der Kunden berücksichtigen – alles in kürzester Zeit und möglichst ohne Lagerbestand. Neue Produktionstechnologien versprechen Lösungen. Additive Fertigung, Robotik oder Internet of Things: Die Produktion von Gütern wird sich in den nächsten Jahren stark verändern.

Neu bearbeitet BaselArea.swiss den Fachbereich „Production Technologies“. Die Region Basel ist gekennzeichnet durch die Präsenz von High-Tech-Unternehmen, die komplexe, qualitativ hochwertige Produkte zu hohen Lohnkosten herstellen. Die Lage Basels an der Grenze zum Elsass und zu Baden bietet ihnen eine echte Chance für den Austausch und die Zusammenarbeit zur Verbesserung der Wettbewerbsfähigkeit sowie zur Entwicklung neuer Geschäftsmodelle.

Im Zentrum des Technologiefelds Production Technologies steht der sorgfältige Umgang mit Ressourcen und der Einsatz von sauberen Technologien. Der Fokus liegt dabei auf den folgenden 6 Bereichen:

  • 3D-Druck, additive Fertigung: BaselArea.swiss organisiert Informations- und Networking-Veranstaltungen sowie Workshops zu diesem Thema und den neuen Geschäftsmodellen. Darüber hinaus existiert eine LinkedIn-Gruppe mit rund 100 Forschern und Themenbegeisterten. 
     
  • Industrie 4.0: In Zusammenarbeit mit Schulen und Forschungszentren bietet BaselArea.swiss Informationsveranstaltungen und technologieorientierte Networking-Veranstaltungen auf regionaler und internationaler Ebene. Darüber hinaus bringt der Technology Circle „Industrie 4.0“ Unternehmen zusammen, um sich zu informieren und das Know-how in der Region weiter zu entwickeln.
     
  • Organische und gedruckte Elektronik: Die druckfähige Elektronik hat das Auftauchen neuer Produkte ermöglicht, beispielsweise OPV, OLED oder Anwendungen in den Bereichen Gesundheit oder Sensoren. BaselArea.swiss initiiert die Zusammenarbeit zwischen Unternehmen und Forschungszentren bei technischen Projekten sowie im Vertrieb und entwickelt zusammen mit der Industrie ein Netzwerk von Kompetenzen im Rahmen des Technology Circles „Printed Electronics“.
     
  • Effizienz bei der Nutzung von Ressourcen und Energie in der Produktion: Im Rahmen eines Technolgy Circles hat BaselArea.swiss ein Netzwerk von Unternehmern aufgebaut, das diesen regelmässigen Austausch pflegt.
     
  • Wassertechnologien: Die effiziente Nutzung von Ressourcen steht im Mittelpunkt. Die Forschung konzentriert sich auf Problemstellungen wie Mikroverunreinigungen, die Rückgewinnung von Phosphor oder auch die im Wasser vorhandenen antibiotikaresistenten Gene. Einmal pro Jahr veranstaltet BaselArea.swiss eine Veranstaltung in Zusammenarbeit mit der Hochschule für Life Sciences der Fachhochschule Nordwestschweiz (FHNW).
     
  • Biotechnologien für die Umwelt: Die Nutzung von lebenden Organismen in industriellen Prozessen ist nicht neu, gewinnt aber an Bedeutung, zum Beispiel bei der Behandlung von Ölunfällen. Dank Biokunststoffen aus erneuerbaren Rohstoffen (wie Lignin) bieten ökologischere Lösungen echte Alternativen zu den herkömmlichen chemischen Prozessen. BaselArea.swiss organisiert regelmässig Veranstaltungen zu diesem Thema und schafft Verbindungen zwischen Forschern, Industrie und Verwaltung.

Die gemeinsame LinkedIn-Gruppe „Production Technologies by BaselArea.swiss“ zählt heute bereits 46 Mitglieder, die sich gegenseitig über die neuesten Entwicklungen in den oben genannten Gebieten austauschen. Die Gruppe ist offen für neue Teilnehmer – melden Sie sich an!

Wenn Sie Interesse am Austausch mit Unternehmern und Forschern zum Thema „Production Technologies“ haben oder weitere Informationen über unsere Services wünschen, dann kontaktieren Sie einfach Sébastien Meunier (siehe Kontaktdaten links).

report Precision Medicine

Genedata increases research efficiency

22.02.2018

report Precision Medicine

First FutureHealth Basel was a success

29.01.2018

report Medtech

“This is the century of biology and biology for medicine”

05.10.2016

Andreas Manz is considered one of the pioneers in the field of microfluidics and at present is a researcher at the Korea Institute of Science and Technology in Saarbrücken (KIST Europe) and professor at Saarland University.

In our interview, the successful scientist explains the motivation that drives him to research and what it means to receive a lifetime achievement award from the European Patent Office.

You are known as a pioneer of microfluidics. How did you come to start researching in a completely new field?
Andreas Manz*:
Even as a child I was really fascinated by small things. They were mostly stones, insects or bugs that I took home with me. This interest in small things stayed with me, and eventually I went on to study chemistry at the ETH Zurich. In my PhD thesis I examined the natural law of molecular diffusion. If you entrap two molecules in a very small volume – rather like two birds in a cage – they cannot get away and become faster. I was instantly fascinated by this acceleration. My professor Willy Simon, an expert in chemical sensors and chromatography, talked in his lectures about processes can also get very fast when they are reduced in size. And that instantly fascinated me.

But so far you have been talking about pure chemistry – when did you get the idea of using chips?
I started working for a company in Japan in 1987. That’s where I first came into contact with chip technology. I was part of the research department myself, but I kept seeing colleagues disappearing into cleanrooms and coming back with tiny chips. That inspired me and got me wondering whether you could not also pack chemistry onto these chips instead of electronics. After all, even the inner workings of the tiniest insect involves the transportation of fluid, so it should also work on a small chip. At Hitachi I was eventually able to get my first microfluidic chip produced for test purposes.

From Japan your journey then took you to Ciba-Geigy in Basel. What prompted that move?
Michael Widmer was then Head of Analytical Chemistry Research at Ciba-Geigy in Basel. This brilliant fascinated me from the word go: he had the vision that you should also integrate crazy things in research and not only look for short-term financial success. Industry should allow itself to invest in quality and also develop or promote new methods in the research activities of a company if it could be of benefit to the company. So Professor Widmer brought me to Basel, where it was my mission to pack “the whole of chemistry”, as he put it, on a single chip. While Michael Widmer did not yet know what to expect, he had a feeling that it could be worthwhile.

How did you go about it?
At that time, chips were very new and not entirely appropriate for the world of pharmaceuticals. Ciba-Geigy, too, was not enthusiastic about the new application initially. There was no great interest in making changes to existing technologies and processes that worked. But in my research I was able to try out what might be possible. I found, for example, that electrophoresis – a method for separating molecules – could work. It would be relatively easy to miniaturize this method and test it to see whether it also speeds up the process. And the results were very good: We were able to show that a tenfold miniaturization of electrophoresis makes the process 100 times faster without compromising the quality of the information. This realization was really useful for clinical diagnosis and the search for effective molecules in drug discovery. At the same time, we were also testing different types of chips that we sourced from a wide variety of producers.

When did the time come to go public with the new technology?
At the ILMAC in Basel in 1996, Michael Widmer organized a conference in the field of microfluidics – which proved to be a bombshell. We had planned for this effect to a large extent, because in the run-up to the meeting we had already invited selective researchers and shown them our work. This hyped things up a little, and at the conference we were eventually able to mobilize researchers from Canada, the USA, the Netherlands, Japan and other countries to present the new technology of microfluidics.

Although the attention was there, Ciba-Geigy nevertheless later brought research in this field to an end. Why was that?
Basically we lacked lobby groups within the company and a concrete link to a product. Our research was somewhat too technical and far ahead of its time, and within Ciba-Geigy they were simply not yet able to assess the potential of the technology. Added to which, we had not given any concrete consideration to applications; we were more interested in the technology and experiments than in its commercial use. When a large picture of me then appeared in a magazine with a report on microfluidics, and the journal pointed out on its own initiative that Ciba-Geigy was not adequately implementing the technology, the research was stopped. I was quite fortunate under the circumstances: Since the company had terminated the project, I found that – despite a non-compete clause – I was able to follow the call to Imperial College in London within a short time, where I could continue research in microfluidics with students. In addition, I joined a company in Silicon Valley as consultant.

Is it not typical that a large company fails to transform a pearl in its portfolio into a new era?
You should not see it so negatively, because microfluidics was a pearl not for the pharmaceutical industry, but rather for environmental analysis, research or clinical diagnosis. The pharmaceutical industry dances to a different tune. It prefers to buy in the finished microscope at a higher price than get it constructed itself for relatively little money. Michael Widmer and his team in research and analytical chemistry at Ciba-Geigy developed many things in a wide variety of fields – with which were far ahead of their time.

Microfluidics is an established field today. What are the driving forces now?
To my mind there are two driving forces: firstly the application and the users and secondly academic curiosity as regards the technology and also training. The first of these is the stronger driving force: there are cases in which the application of a microfluidic solution is not absolutely necessary to do justice to the application. Take “point of care”, for example. The objective is to analyse a patient directly at the place where he or she is treated – for example, in intensive care. The patient is evaluated, blood and respiratory values are analysed, and it is possible to assess immediately whether the measures taken are having an effect in the patient. Another possibility is to integrate the widest variety of analytical options in smartphones – similar to the Tricoder in Star Trek. I’m pretty sure that something like that is feasible. But at the moment the hottest topic in the commercial sector is clinical diagnostics. This came as a surprise to me, because you cannot reuse a chip that has come into contact with a patient’s blood. You need a lot of consumable material, which is also reflected in the price. But perhaps new funding models can be found in which, for example, the device is provided, but the consumable material – i.e. the chips – are paid for separately, rather like a razor and razor blades.

Where do you see opportunities for Switzerland in this field?
The education of qualified people is important. Here the ETH and EPFL play a particularly important role for Switzerland, because they attract students from all over the world. They hopefully leave Switzerland with good memories and could possibly campaign later for the commercialization of technologies. That could be a huge opportunity. Of course there are also generous people within Switzerland, but there is a tendency here to economize and think twice before deciding whether and, if so, where to invest one’s money. It’s a question of mentality and not necessarily typically Swiss. It’s also not a bad thing, because in precision mechanics, for example, reliability and precision are essential – and this technology fits with our mentality. “Quick and dirty” works better in Silicon Valley and Korea – but the products then often fail to ensure up to the quality standards here. As a high-price island, Switzerland offers little, opportunity for cheap production, which is why the focus is on education and existing technologies. This too is very important and has a good future.

Will microfluidics one day become as big as microelectronics is today?
I don’t think so, because it is limited to chemical and cytobiological applications and is also not as flexible as microelectronics. At most, I see the new technology being used on existing equipment or processes.

But most of the systems on the market today are very much closed, so it is difficult to integrate new technologies here.
Yes, but that’s only partly true, because existing devices also have to be upgraded. Take a mass spectrometer, for example. You can buy one of these, and there are certainly many companies that sell this equipment. But if ten companies offer something equivalent, you have to stand out from the mass. So if a “Lab on a Chip” is added on, then this mass spectrometer enjoys a clear advantage. While the company makes money from the sale of the equipment, it is the microfluidic chip that gives the incentive to buy – and there is certainly a lot of money to be made from this. You see, we are living in the century of biology and medicine and are only just beginning to takes cells from the body to regenerate them and then perhaps re-implanting them as a complete organ. When you see what has been achieved in physics and electrical engineering in the last century, and translate that into biology and medicine, then we have an awful lot ahead of us. Technology is needed to underpin these radical changes. SMEs in particular are very good at selling their products to research; that’s a niche. In most cases, small companies use old technology and modify it – such as a chip in a syringe that then analyses directly what the constituents of a fluid are when it is drawn up into the syringe. This opens up many opportunities.

You have also co-founded companies, but describe yourself mainly as a researcher. How do the two go together?
Actually I was never an entrepreneur, but always just a scientific advisor. I preferred to experience the academic world instead of becoming fully engaged in a company. Deep down, I’m an adventurer who comes to a company with wild ideas. Money is also never a priority for me; I always wanted to improve the quality of life or give something to humanity. It is curiosity that drives me. When I see a bug that flies, that drives me to find out how it works. There are ingenious sensors in the tiniest of creatures, and as long as we cannot replicate these as engineers, we still have work to do. This inspires me much more than quarterly sales revenue and profits.

But money is also an important driver for research.
Yes, it’s all about money, right down to university research. Research groups are commissioned by companies because of the profit they hope to gain. Even publicly funded research always has to show evidence of a commercial application. Curiosity or the goal of achieving something of ethical value is hardly a topic in the engineering sciences. Of course it’s important that our students can also enter industry; after all, most of the tax revenue comes from industry. But if I personally had the freedom to choose, then I would prefer to pursue work as a form of play – which can by all means result in something to be taken seriously. Take electrophoresis on a chip: That was also quite an absurd idea to begin with, and it led to something really exciting! A lot of my work therefore has a playful, non-serious aspect to it – for me that is exactly right. You see, I can produce a chip which deep inside it is as hot as the surface of the sun, but which you can nevertheless hold in your hand. It’s crazy, but it works, because only the electrons have a temperature of 20,000 Kelvin. The glass outside does not heat up very much as a result, and the chip does not melt. And suddenly you have plasma emission spectroscopy on a chip as the result of a crazy idea. I feel research calls for a certain sense of wit, and I often like to say that, with microfluidics research, we take big problems and make them so small that you can “no longer see them”.

You have covered so many areas of microfluidics yourself – are other researchers still able to surprise you with their work?
Admittedly, I am rather spoiled today by all the microfluidic examples that I have already seen. Sometimes I feel bored when I go to a microfluidics conference and see what “new” things have emerged – I somehow get the feeling I’ve seen it all before. The pioneering days, when there was also a degree of uncertainty at play, are probably definitely over. Today you can liken microfluidics to a workshop where you get the tools you need at any given time. This means of course that the know-how has also become more widespread: Initially I possessed perhaps a third of all knowledge about microfluidics worldwide; today it is much less. So I now enjoy casting my research net further afield.

You received a lifetime achievement award from the European Patent Office last year. What does this award mean to you?
You cannot plan for an award – at most you can perhaps hope for one. When you then get it, it brings a great sense of joy. The award process itself was also exciting: as with the Oscars, there were three nominees: a Dutchman who developed the coding standard for CD, DVD and Blu-ray discs, which is still used to this day, and a researcher from Latvia who is one of the most successful scientists and inventors in medical biochemistry with more than 900 patents and patent applications. Faced with this competition, I reckoned I did not have much chance of the award and was absolutely astonished when I was chosen. The jury explained that its decision was down to the snowball effect: citations almost always refer to my patents at the time with Ciba-Geigy.

Interview: Fabian Käser and Nadine Nikulski, BaselArea.swiss

*Andreas Manz is a researcher at the Korea Institute of Science and Technology in Saarbrücken (KIST Europe) and professor at the Saarland University. He is regarded today as one of the pioneers in microchip technology for chemical applications.

After positions in the research labs of Hitachi in Japan and at Ciba-Geigy in Basel, he took up a professorship at Imperial College in London, where he headed the Zeneca-SmithKline Beecham Centre for Analytical Chemistry. In the meantime he was also a scientific advisor for three companies in the field of chip laboratory technology, one of which he founded himself. In 2003, Manz moved to Germany and headed the Leibniz Institute of Analytical Sciences (ISAS) in Dortmund until 2008.

Around 40 patents can essentially be attributed to him, and he has published more than 250 scientific publications, which have been cited more than 20,000 times to date.

report Micro, Nano & Materials

Basel researchers create images of atoms

23.01.2018

report Micro, Nano & Materials

Basel scientists cool chip to record low

22.12.2017

report Production Technologies

Keime und Antibiotikaresistenzen – ein Eventthema, das uns alle betrifft

05.10.2016

Bereits zum siebten Mal findet am 25. Oktober 2016 der eintägige Event aus der Reihe der Wassertechnologie statt, den BaselArea.swiss gemeinsam mit der Hochschule für Life Sciences der Fachhochschule Nordwestschweiz (HLS FHNW) organisiert. Am diesjährigen Event dreht sich im „Gare du Nord“ in Basel alles um „Keime, Antibiotikaresistenz und Desinfektion in Wassersystemen“.

Die Teilnehmer erleben Vorträge und Diskussionen, Institutionen können sich in der Fachausstellung mit Postern zeigen und so zu vertieften Diskussionen anregen. Ein Schlüssel für den langjährigen Erfolg der Veranstaltungsreihe ist die Kooperation der beiden Partner. Thomas Wintgens vom Institut für Ecopreneurship der HLS FHNW betont: „Uns ist die Zusammenarbeit mit BaselArea.swiss sehr wichtig, weil die Organisation ein regional stark vernetzter Akteur im Bereich von Innovationsthemen ist.“

Man habe eine gute Symbiose zwischen spezifischen, fachlichen Kompetenzen und dem Wissen über Themen und Akteure gefunden. „Auch in diesem Jahr ist es uns wieder gelungen, ein komplett neues Thema aufzunehmen“, sagt er. Die Forschungsaktivitäten der Gruppe um Philippe Corvini von der Hochschule für Life Sciences FHNW gaben den ersten Impuls zur diesjährigen Themenwahl.

Philippe Corvini, warum ist das Thema „Keime, Antibiotikaresistenz und Desinfektion in Wassersystemen“ spannend für eine grosse Veranstaltung?
Philippe Corvini: Das Thema ist in den letzten Jahren stärker in den Bereich der Umweltforschung vorgedrungen, immer mehr Arbeitsgruppen beschäftigen sich mit dem Verhalten und Vorkommen von Antibiotikaresistenzen in der Umwelt. Zudem haben auch auf nationaler Ebene die Aktivitäten zugenommen, es gibt ein nationales Forschungsprogramm und eine nationale Strategie zum Umgang mit Antibiotikaresistenzen. In den nächsten Jahren wollen wir intensiver untersuchen, wie sich diese Resistenzen zum Beispiel in biologischen Kläranlagen verhalten und welche Faktoren die Weitergabe von genetischen Informationen, die zu Antibiotikaresistenzen führen, beeinflussen.

Welche neuen Erkenntnisse erwarten die Besucher?
Philippe Corvini:
Wir werden am Event die neuesten Ergebnisse unserer Forschung vorstellen. Bisher wurde eine Resistenz relativ simpel erklärt: In der Umwelt existiert ein Antibiotikum, wodurch sich Resistenz-Gene bilden. Diese werden übertragen, die Resistenz verbreitet sich. Wir haben nun entdeckt, dass resistente Bakterien ein Genom besitzen, das sich weiterentwickelt, so dass sie sich am Ende sogar von Antibiotika ernähren können. Diese resistenten Bakterien bauen also die Antibiotika-Konzentration ab, so dass Bakterien, die sonst empfindlich auf den Wirkstoff reagiert haben, nun im Medium überleben und sogar ihrerseits eine Resistenz entwickeln können. Wir hoffen, künftig die Ausbreitung der Resistenzen bremsen zu können.

Wie könnte man dies schaffen?
Thomas Wintgens:
Wir werden demnächst im Pilotmasstab verschiedene Betriebsweisen von biologischen Kläranlagen untersuchen, um herauszufinden, wie diese Verbreitungswege durch Betriebseinstellungen in den Anlagen beeinflusst werden können. Ausserdem forschen wir an Filtern, welche die antibiotikaresistenten Keime zurückhalten und so die Keimzahl stark reduzieren können.

Warum ist die diesjährige Veranstaltung auch für Laien interessant?
Philippe Corvini:
Ich glaube, fast jeder hat eine Meinung zum Thema Antibiotikaresistenz und viele Leute haben eine Ahnung, wie dringend das Thema ist. Schliesslich betrifft das Thema Gesundheit uns alle.

Ein Fachevent – auch für Laien
Laut Thomas Wintgens dürfen die Teilnehmer viele kompetente Redner erwarten: „Wir freuen uns zudem sehr, dass Helmut Brügmann von der Eawag die nationale Strategie und deren Bedeutung für den Umweltbereich vorstellen wird.“

Generell berührt das Thema Wasser uns alle, weil es unser wichtigstes Lebensmittel ist. Wir konsumieren es als Trinkwasser, über Nahrungsmittel oder nutzen es für unsere persönliche Pflege. Gerade deswegen die Wassertechnologie laut Wintgens ein spannendes Thema für eine öffentliche Veranstaltung: „Wasserqualität ist jedem von uns wichtig und es besteht in der Öffentlichkeit ein grosses Interesse an diesem Thema.“ Gleichzeitig würden die Wassertechnologien aber auch Firmen die Möglichkeit bieten, innovative Produkte zu entwickeln und Stellen zu schaffen.

Seit 2009 Plattform für das regionale Netzwerk
Die HLS FHNW veranstaltet seit 2009 gemeinsam mit i-net/BaselArea.swiss die Veranstaltungsreihe im Bereich Wassertechnologie, welche jährlich rund 120 Teilnehmer anzieht. Die Idee, eine Eventreihe zu starten, entstand aus der Überzeugung heraus, dass Wasser in der Region ein wichtiges Thema ist und hier die Wertschöpfungskette vorhanden ist», so Thomas Wintgens. Jedes Jahr setzten die Verantwortlichen neue Themenschwerpunkte, zum Beispiel Mikroverunreinigungen im Wasserkreislauf, Membranverfahren oder Phosphor-Rückgewinnung. Wintgens erklärt: „Jedes Jahr machen Akteure aus der Forschung, der Technologie oder dem Bereich der Anwendungen mit und präsentieren sich vor Ort“.

Der Plattform-Gedanke war den Initianten von Anfang an wichtig, der Event sollte das regionale Netzwerk stärken und Innovationsvorhaben ermöglichen. Diese Strategie hat sich laut Thomas Wintgens bewährt: „Der Anlass ist ein wichtiger Baustein in unserer Öffentlichkeitsarbeit und wurde zu einem festen Treffpunkt der Interessenten und Kooperationspartnern aus der Region“. Viele Teilnehmer würden den Event schon seit Jahren verfolgen und seien jeweils neugierig auf das Thema im nächsten Jahr.

BaselArea.swiss und die Hochschule für Life Sciences FHNW  (HLS) führen am 25. Oktober im „Gare du Nord“ in Basel ein Symposium unter dem Titel „Keime, Antibiotikaresistenz und Desinfektion in Wassersystemen“ mit Referenten aus den Bereichen Forschung, Verwaltung, Wasserversorgung und Technologieanbieter durch. Eine Anmeldung bis 19.10.2016 ist erforderlich.

report Innovation

Finding new models to keep us healthy

21.12.2017

report ICT

BC Platforms supports genome study

19.12.2017

report Micro, Nano & Materials

«If a scientist doesn’t know how to recognise commercial potential, he won’t found a busin...

02.12.2015

Robert Sum and Marko Loparic are both entrepreneurs with a scientific background. In the i-net interview, they tell the stories of Nanosurf and Nuomedis, explain why the Basel region is a great place for their startups and what could be done to foster an entrepreneurial spirit in the scientific environment.

Robert Sum, you co-founded Nanosurf in 1997, just shortly after completing your thesis. What motivated you to create your own startup?
Robert Sum*: I was motivated by the possibility of using my knowledge from university in a practical way. Towards the end of my thesis in 1995, I had the good fortune that Hans-Joachim Güntherodt was the rector, and together with the department of economic sciences he created a seminar for PhD students. The seminar was called «Start-up into your own company». My friend Dominik Braendlin and I registered for this innovative format. We had already worked together on research projects and we felt the need for a concrete application. Another good friend, Lukas Howald, approached us with the idea of Professor Güntherodt to design a simple and easy-to-use Scanning Tunnelling Microscope for schools. We liked the project and started to work on it. Luckily, the Commission for Technology and Innovation (CTI) launched its startup initiative shortly after this. Thanks to the coaching, we were able to write our first real business plan and CTI decided it was worthy of support. Nanosurf is the only company from the first CTI support round which survived. I stayed with the company until 2014, but in 2009, I stepped back from operational management.

The next project followed immediately: Nuomedis.
Robert Sum: After Nanosurf, I started to work intensively with universities on scientific projects. This is how I met Marko Loparic. We worked together on two projects for a specific application in tissue diagnostics, which again was supported by CTI. In the end, we decided to found a «spin-out/start-off» company from Nanosurf plus the University of Basel, which became Nuomedis.

Marko Loparic, did you have any entrepreneurial background?
Marko Loparic*: I’m a medical doctor by profession. During my PhD at the Biozentrum, University of Basel, I worked with atomic force microscopy, AFM, and immediately realised that this nanotechnological device had very high potential for resolving crucial clinical questions. We saw not only great scientific potential - for example for understanding not only the mechanisms of tissue engineering, cancer development and metastasis, as well as drug activity, but also the diagnostic applications, such as early detection of osteoarthritis or cancer diagnosis. AFM helped us to explain biological functions because at the very first phase of a disease, the alterations in tissue are occurring at the nanometre scale. However, it was time consuming and very complicated using the microscope. So we developed little innovative algorithms which automated, simplified and enabled AFM applications in life sciences and clinics. At the end of my PhD studies, I spoke with my supervisors about how to commercialise all the simplifications when the collaboration with Nanosurf was initiated and the creation of the easy-to-use, AFM «Automated and Reliable Tissue Diagnostic», «Artidis», began.

What steps are planned next for Nuomedis?
Marko Loparic: We plan to take «Artidis» to the next level. From its use in physics, biology, chemistry and science, our next step is rather a big jump: to be the first company to introduce AFM technology into clinics.

This almost sounds like you had no choice but to found a company.
Robert Sum: We found an ideal situation: I had the experience to build up a company, combined with experience in technology development and knowledge of the startup environment; and Marko brought vast scientific and clinical experience at a high level. We started by thinking about the possible need and how to do business with it. Out of these ideas, we created a deck of PowerPoint slides – a lean business plan so to speak. It was clear to us that there was huge business potential which we wanted to realize.

Marko Loparic: From the start in 2005, working on the project was great, as the whole team was fully motivated. Everything developed very smoothly and nicely. Supporters even became investors, and we still enjoy a strong scientific collaboration with the Biozentrum. It’s great that the main patents are now granted worldwide – this is very important and will help us to attract further investors. Currently we are focusing on the transformation of the «Artidis» device into a clinical in-vitro medical device.

In fact, you have to create a demand among doctors and oncologists, don’t you?
Marko Loparic: At the moment, our main focus is on introducing to clinicians the breakthrough technology of nanomechanical profiling and the benefits which it brings to clinicians, hospital and patients. Our prototype is currently being evaluated and used in ongoing clinical studies at the Pathology Department of the University Hospital Basel. In the near future, we aim to confirm its effectiveness for breast cancer prognostics in order to reduce the problem of chemotherapy overtreatment. Nowadays, markers are not specific enough to distinguish with a high degree of probability which patients will benefit from chemotherapy and which will not. If we could reduce chemotherapy treatment just a fraction, we could make a big difference. Our main hurdles to entering the market are now regulatory obstacles, which we plan to overcome in the next two to three years.

How does your experience in founding Nuomedis compare with founding Nanosurf 18 years ago?
Robert Sum: Many things have changed regarding the environment. When we founded Nanosurf, the university was not focused on commercialising an idea. Business was perceived as something strange, and science was sacrosanct. This has changed dramatically. The word startup is almost a must nowadays for PhDs. Additionally, through TV shows and articles in the media, people are more aware that startups are a culture which needs to be fostered. However, starting a business is a lot of work, which has to be done with care. It is easier for me today, as I have some experience and won’t make the same mistakes again.

You support a lean startup approach – are business plans not needed anymore?
Robert Sum: I think there is a big misapprehension regarding the idea of the lean startup. A business plan is still needed - it’s essential that you know what your plans are. You need a concept, but it doesn’t have to be a book. You still need to know the basics at the very least, for example what the product is, who the customers are, where you see risks, how you produce or how you finance – to mention only a few. What lean startup means to me is that you should focus on the market and keep the customer in the centre.

Is it at all possible to use the lean startup method in the complex healthcare environment of Nuomedis?
Robert Sum: The problem in healthcare is that you don’t simply have a customer and sell a product. We are facing a complex health insurance environment based on a solidarity principle, and we have many stakeholders influencing the system, such as the hospital, the clinicians, other healthcare institutions, society or the company itself. It is indeed much more difficult to use the lean startup approach here.

Marko Loparic: Our major focus is on clinicians, and we use the experience we have in science and clinics to create awareness. Nevertheless, we are actively cooperating with other key stakeholders, such as hospitals, patient organisations, health insurers, clinical societies or government bodies, to facilitate accelerated development and keep the time to market as short as possible. Finally, at our demo site in the Pathology Department of the University Hospital Basel, we learn how the clinicians and hospital system operate, which is important to help us shape the device to match their needs. Hence, proximity to measurement site is key for the successful development and acceptance of technology, and our plan is to relocate in order to be as close as possible to the hospital.

Robert Sum: This is the typical process of understanding the market – and I think this is where Nuomedis has benefited from the lean startup approach.

How important was it for you to be in the Basel region? How does it foster your business?
Marko Loparic: Basel is a centre of nanotechnology and especially AFM, since Professor Christoph Gerber, who built the first AFM, is still active here together with many distinguished professors who are making great use of the technology to boost their scientific output. For us, Basel has all the ingredients for success: We have a city where technology is well supported and hospitals which are open-minded and ready for new technologies. Not to mention the Biozentrum and the Swiss Nanoscience Institute, which offer great expertise and facilities for innovative projects.

Robert Sum: Another aspect is the economic environment of Basel with many pharma and medical technology companies. There is an entrepreneurial environment here with investments available. Not to mention the role of government: Basel-Stadt and Baselland collaborate very closely and, if we need some support for administrative issues, they are extremely open-minded and helpful.

What makes Basel a startup-friendly environment?
Marko Loparic: Positive factors in the region are its good infrastructure, both a national and international network, and its spirit of entrepreneurship. If you work in Basel, there are many options for learning how to commercialise your idea. This is true for the whole of Switzerland by the way. There are dedicated organisations and funds for each step you have to take in developing a business, ranging from CTI to investors and incubators. The i-net Business Plan Seminar was very important for me. In only one day, I learned a lot about how to construct a business. In my opinion, there is still a big gap between basic research and translational science.

Robert Sum: Either you are a good scientist or an experienced business person – it’s difficult to be both. This is an art that is nicely managed in Silicon Valley, and successful entrepreneurs become investors. And I guess something could be done here. Organisations like i-net are very important for networking ideas, and you can also find support at EVA or business parks. Not to mention Unitectra, which provides workshops for students on how to exploit intellectual property created at university. Indeed there are many supportive organisations, which can make you feel a little lost. CTI Start-up helped us to get an overview of the whole support landscape.

Marko Loparic: In my opinion, it’s all about education: If a scientist doesn’t know how to recognise commercial potential, he won’t make it. There are seminars to help, but you need an incentive to go to such seminars. What about scientists being approached from the business side? When you apply for a grant, you always need to stress the long-term outcome of your project and sometimes its commercial purpose. It would be great to have an organisation with the skills to read those grant applications and search for business potential. A person or organisation that could offer this could help create a great start-up environment.

Interview: Ralf Dümpelmann and Nadine Nikulski, i-net

*Robert Sum is one of the co-founders of Nanosurf AG and has served in different management positions as CEO, Head of Sales & Marketing and Business Development. During his time working in business development he managed the research collaboration with the Biozentrum for the project «Artidis», which is now the prime project of Nuomedis AG. After 17 years of management experience at Nanosurf Dr. Sum left to found Nuomedis AG with members of the Biozentrum team. Now Dr. Sum serves as CEO and member of the board.

*Marko Loparic, MD, is the key inventor of «Artidis» technology from the Biozentrum University of Basel. He managed the collaboration with Nanosurf for the «Artidis» project, which is now the prime project of Nuomedis AG. Now Dr. Loparic serves as the Chief Medical Officer and member of the board at Nuomedis AG. He is responsible for medical related concerns of the project and its implementation in the clinical setting.

report Life Sciences

Idorsia to collaborate with Janssen Biotech

04.12.2017

report Life Sciences

Novartis medication effective against psoriasis

30.11.2017

report Medtech

«Only when it is shared in the team does an idea take shape»

03.09.2015

Hans-Florian Zeilhofer is a surgeon, innovator, scientist and entrepreneur. He has performed pioneering work in many fields of reconstructive facial surgery. Always driven by the goal of improving the situation for his patients, Zeilhofer is constantly initiating new projects that meet with international acclaim – as also with his latest project, Miracle, which his team will present at the Lift Basel Conference 2015.

In this interview he explains why work in an interdisciplinary team is so important for him and why he is convinced that new impulses are being generated worldwide from Northwest Switzerland.

You are a surgeon with an extraordinary background – how would you describe yourself?
Hans-Florian Zeilhofer*: Above all I’m an inquisitive person who likes to explore new paths. Even in areas where there is no path as yet, and even if I don’t know whether and how I will arrive. It‘s an enriching experience to keep meeting new people on the way and finding the solutions together that will hopefully fulfil their purpose. It’s really inspiring when you approach and arrive at a goal in this way.

You perform surgery, establish companies and are scientifically engaged in diverse areas. How do you manage with your work-life balance?
I dislike the term work-life balance. I don’t put my professional life and private life on the scales to make sure they are in balance. You should always do your work with joy and passion and find fulfilment in your work. Then you will also no longer speak of work-life balance. If work is done or has to be done without any consideration of the overall context behind it, then there will be no sense of purpose or meaning. It is therefore important to establish working conditions that help to invest the work with meaning – and that applies in all kinds of work.

You have already done a lot in your life: medicine and dentistry, philosophy, science and management – how do you reconcile all that?
I don’t see my different activities as contradictory, but rather as mutually complementary. Today I can do a lot of things that I could not do five or ten years ago and am constantly trying to appreciate what new perspectives there are and what I would like to keep working on. You never stop learning, and I learn a lot from younger colleagues. That’s very enriching for me in the late stage of my professional career.

Do we live in an age where more Leonardo Da Vincis are needed? Should doctors acquire a broader knowledge?
It’s not absolutely necessary to emulate the universal genius, but a certain knowledge base is extremely important. The oral and maxillofacial surgeon has to study both medicine and dentistry. But that is no longer enough by many means. A budding specialist should acquire a wide variety of knowledge, for example in engineering and the use of computers or media, but knowledge of economics and ethics is also become increasingly important. I also believe that the training has to change. I’m in the fortunate position that I am able to influence developments and guide the youngsters. That’s a really nice experience.

You are a pioneer in many areas of medical technology. How do those famous Eureka moments come about?
My innovations always start out from an everyday problem for which I am seeking a solution. If I find a conventional solution for our patients is no longer adequate or satisfactory, then I start looking for an alternative. Solutions often emerge quite suddenly or spring from a moment of meditative calm.
The idea then comes, for example, when I’m sitting in the train with my eyes closed or in the morning under the shower. It’s working there somewhere in the subconscious and then suddenly an approach to solving the problem presents itself. As a rule it will not yet have clearly defined contours, but will be sufficient to allow me to make some brief notes. Then it is important to have friends and partners with whom I can exchange ideas. For only through this exchange can the idea come into being and take concrete shape. If a partner then asks the right questions, this quickly takes it forwards and you can see what aspects of the idea are still incomplete, where there might be a hitch that has to be considered to ensure the solution will work.

You’re known as a doer – many of your ideas are implemented and you have been involved in many spin-offs. What does the risk of failure mean for you?
The risk of failure is a very serious matter, and it’s always there wherever you go – for surgeons in particular this is a huge challenge every day. When a patient entrusts himself to me, he wants the operation to go well. For me this means I have to plan a lot to make sure the procedure is as safe as possible. And I also have to be aware that Plan A might have to be abandoned in the course of an operation and that an unpredictable moment may spontaneously necessitate a new Plan B.
In the course of my professional experience I have learned to cope with this. We have often tried to learn from other professional groups such as musicians, who also have to improvise. It can only enrich us all to think outside the box and to learn from other disciplines; in my case, that is art and the humanities above all.

And what does entrepreneurial risk mean for you?
This also requires courage. It took me a long time to venture taking this step for the first time. I have often found that outstanding and especially innovative medical ideas have hardly been taken up by industry. There are a wide variety of reasons for this: sometimes it is down to production processes that don’t fit, or there are logistical problems, and the regulatory approval processes are also often too protracted. I came to realize that we doctors and scientists need to find the courage to start companies ourselves if we do not want good ideas to land in the drawer. However, we then take an entrepreneurial risk that brings far-reaching strategies for action with it. For example, I first have to protect my idea before I go public with it. After the patent and the start-up, you then have to develop the product to market readiness and resolve the problems associated with this. Not least, and here lies a more complex part of the venture, you have to find investors who are prepared to provide financial support for a new development. But such investors of course also want to keep the risk as low as possible if they are to come in with several hundred thousand to a million francs. But ultimately, it is precisely the riskier ideas that are the really exciting projects.

Where does your enthusiasm for entrepreneurial risk come from?
You know, as a young doctor in Germany I developed my first idea for a product innovation. And when I presented this to experts, I was told no one needed it. Soon after that I attended a congress on medical imaging in Silicon Valley. There everyone congratulated me and encouraged me to pursue the idea. Eventually I found my partners in related subjects, such as mathematics and engineering. Leading research and cutting-edge technology can no longer be developed today in a monoculture. You need small and flexible, interdisciplinary teams of physicists, computer scientists, biologists, engineers and physicians for creative and quick solutions. There is enormous energy and dynamics here. It’s a culture that we have developed in Basel and taken almost to perfection. This is precisely the secret and the key to our success in the region. Such a culture needs sufficient space and time to develop and does not work as a solo effort – you always need a team.
I see my role increasingly in encouraging others, offering security and trust and also simply being present. Trust always rests on people, and you have involve yourself as a whole person. The partners feel this. I like being described as a door opener, but actually I only support the teams – they open the doors themselves.

And was this also the case with your last two coups: the MIRACLE project and the MedTech Fund MTIP?
Put simply, the MIRACLE project is about minimally invasive, computer-assisted, robot-guided bone cutting. The project is almost like a miracle. We are already world leaders in the use of laser technology to process hard tissue. In the next generation we want to work with flexible instruments directly in the body in order to make the procedures less stressful. I’m quite sure the MIRACLE project will have major significance for our society around 2050. Then there will be almost two million people aged over 65 in Switzerland. Greater life expectancy will bring an increase in age-related diseases due to wear and tear. The treatment of these diseases will require very complex technology and should not compromise the quality of life of patients. We therefore have to develop technologies with specific solutions for elderly people that allow the minimum possible invasiveness and rapid healing. With MIRACLE we will broaden the spectrum for surgical procedures and also make therapeutic measures accessible for elderly patients in relatively poor general health. At the same time, it will be possible to shorten the length of hospital stays and the subsequent rehabilitation phase.
It is our task today to research the basic principles that can deliver satisfactory results for the population in 30 or 40 years.
The special feature of MTIP is that the University of Basel and Basel University Hospital are partners in the fund. Both are sharing the entrepreneurial venture with us. I see this as a commitment that gives us courage and trust in science to continue down this path with industry.

Last year you made a highly regarded impression at the Lift Basel Conference that aroused a desire for more. What can visitors expect on the subject of Surgeon Superpowers this year?
We will present the Miracle project at the Lift Basel Conference 2015 and show the robot in Action. I very much hope that physicians will also be at the event and that we can dispel any reservations they may have about this technology. I believe it’s very important that we develop technologies out of our field, design them ourselves, keep them under our control and don’t place them unconditionally in the hands of industry. We will also present the latest 3D printing at the Lift conference. We already worked with this technology many years ago, when it found use in the automobile industry. I was one of the first to use 3D printing for medicine. Today we can produce individual implants from titanium powder that are better accepted by the body and are adapted to the needs of the patient. A third important issue is Big Data in medicine. We need cross-sectional images through the body for diagnostic purposes. These images contain an awful lot of information and we use only a small percentage of this – if any of it at all. Using today’s computing power we could process this data and use it, for example, for prophylaxis. We therefore intend to pay greater attention to Big Data here in Basel.

What other visions do you have for the region?
My vision is for the structures we are building up now to endure. I call the environment here a Medtech Innovation Hive. Beekeeping has been a hobby of mine for more than 30 years and I‘m fascinated by the way 40,000 individuals live together in a superorganism with a highly complex organization. For me the beehive is a source of inspiration and problem solving. And precisely for this reason I call our environment a hive, because like a bee population we need to be sensitive and flexible in the way we react to our environment. The research structures are like an organism which is in a state of constant change, can divide and grow, but is also vulnerable. In view of the high degree of interdisciplinarity, we need to develop new structures of cooperation. These will have an impact on industry, on the way a company is organized. And I’m sure these structures will also have an impact on universities. There are structures - such as the division into faculties - that are difficult to overcome. In Basel we have had help in resolving this problem with the establishment of departments. But in my opinion that is only an interim solution. At university level we need to find new ways to give structure and support to this form of research and facilitate a sustainable development for the future. And I’m delighted to have the privilege of playing a part in helping to shape this.

You came to Basel from Munich in 2002. Certainly a stroke of good fortune for Northwest Switzerland. And for you too?
I find very open people in Basel with whom I can discuss my ideas. And I appreciate the fact that Basel has a full university. For I believe there is an advantage in this that cannot be overestimated. In the Basel region we have not only a strong university, but also universities of applied science that are doing very good applied research. At the same time, we have very short paths of communication with the Federal Institutes of Technology in Zurich (ETH) and Lausanne (EPFL) and with EMPA and the CSEM. The triregional metropolitan region lends the Basel region a cultural diversity that we need to put our ideas into practice. I know many places in the world where people are engaged in innovation. And I’m convinced that something like a Silicon Valley for Europe can grow here – with impulses for the world and of similar consequence. And you talk of good fortune: yes, I do see it as a real stroke of good fortune that I can initiate and follow such a process together with i-net, the Swiss Innovation Park Northwest Switzerland, the university and university hospitals – I won’t get another chance like this.

Interview: Fabian Käser and Nadine Nikulski, i-net

*Professor Hans-Florian Zeilhofer heads the clinics for oral and maxillofacial surgery at the University Hospital Basel and the Cantonal Hospital Aarau, as well as the High-Tech Research Centre at the Department of Biomedical Engineering in the Faculty of Medicine, University of Basel. After studying human medicine, dentistry and philosophy, he trained as a specialist in oral and maxillofacial surgery and gained his postdoctoral qualification at the university hospital Klinikum rechts der Isar of the Technical University Munich. In June 2002, he joined the University of Basel. In 2004 he established and headed the High-Tech Research Centre at the University Hospital Basel. In 2005 he became the founding president of the annual International Bernd Spiessl Symposium for Innovative and Visionary Technologies in Cranio-Maxillofacial Surgery. Since 2013 he has been establishing the Med-Tech Innovation Hive in collaboration with i-net and the Swiss Innovation Park (SIP) Basel. Since 2007 he has been president of the Swiss Society of Maxillo-Facial Surgery. He has received numerous honours and awards for his innovative research work. He holds a number of international patents and has created several startup companies in recent years out of high-tech innovations from university research. Most recently he founded the new innovation platform Med-Tech Innovation Partners (MTIP) as a private public partnership together with the entrepreneur Felix Grisard and the manager Christoph Kausch with the involvement of the University of Basel and the University Hospital Basel.

Project «MIRACLE»

Webpage of MTIP

Department of Biomedical Engineering

Video of Hans-Florian Zeilhofer at Lift Basel Conference 2014

report Life Sciences

Roche looks to further expand its digital portfolio

27.11.2017

report Precision Medicine

The powerful patient

21.11.2017

report Medtech

«We benefit from many years of research in Basel»

08.07.2015

While Switzerland is innovation world champion in many rankings, promising innovations in the field of medical technology often lack the funding needed in Switzerland to get them to the market. The start-up investor MedTech Innovation Partners AG (MTIP) closes this gap.

CEO Christoph Kausch explains in the i-net interview what MTIP does differently from other investors and outlines the start-up projects that are especially interesting for his company.

MedTech Innovation Partners has recently established its presence in the market. How did this come about and why did you not take this step earlier?
Christoph Kausch*: About two-and-a-half years ago, the idea was conceived of bringing the work and research of Prof. Hans-Florian Zeilhofer together in a business model under the MTIP brand. This means that MTIP benefits from many years of research in Basel. Since then, the organization has developed and the concept refined. In short, we are strongly rooted in Basel thanks to our history and promote innovation here. Our work can help to prevent start-ups taking their good ideas abroad because they are unable to find the necessary funding and resources here.

And who are the people behind MTIP?
Apart from me, the core team includes Professor Zeilhofer, Head of the High-Tech Research Centre at the University Hospital Basel, who has been engaged in the field of medical technology throughout his career, and also the entrepreneur and investor Dr. Felix Grisard, who has been investing in medical technology for more than ten years. We have a strong team of board members and an equally top-class advisory board. Our skills range from medical technology and research expertise, through investor and entrepreneurial know-how to knowledge of how to manage innovation projects.

The MTIP board of directors is made up of highly renowned individuals. How were you able you motivate these people?
Until now there has not been a business concept anywhere in Switzerland with such strong links to research institutions. We are closing this gap in the market in order to promote innovations in Switzerland. The opportunity to play a part in this is very attractive.

MTIP promises to put the emphasis on sustainable development. What do you plan to differently from other funds?
Our integrated business model takes the long-term view; we are not in it to make a fast buck. We also make a contribution to society by reinforcing the power of innovation strength in Basel. What no other venture capital fund in this area possesses is our unique Swiss network and our excellent access to research institutions. At international level we are developing an “innovation ring”. For example, when we carry out a clinical trial for a start-up, we can do this much faster but to the same quality standard in collaboration with top-flight international partners. This shortens the time to market enormously.

What does MTIP expect in return from the companies you support?
A trusting collaboration and thus the people involved are very important to us. Intellectual property rights, such as patents or brands, must be clearly regulated before the technology can be developed further. We ourselves are a minority investor and strive for at least a 10 percent stake in a start-up. Our objective is to support the entrepreneur behind the company and to help him avoid the pitfalls that occur during the establishment of a company.

You write on the website that MTIP wants to get involved as early as possible and provide long-term support. For how long do you plan to support start-ups?
It’s somewhat easier here in Switzerland than elsewhere to get seed capital ranging from 100,000 to a million francs for the first round of financing. But what is incredibly difficult is the follow-up funding. This leads to many start-ups having to move away. So we also support the follow-up funding after the seed funding. To facilitate this, we join forces with other investors.

Medical technology is a very broad term. It encompasses everything from gauze bandages through implants and robot-assisted surgery to treatment and nursing. Where does MTIP focus its attention in this enormous range of options?
We have five focus areas: imaging, robotics/navigation, IT/big data management, medtech meets pharma and smart materials. This is where our core competencies lie, but this does not mean that we would exclude other areas. Interdisciplinarity is also very important. A model organization is the High-Tech Research Centre of Professor Zeilhofer, where different disciplines, such as IT, biology, engineering, the humanities, art and medicine, work together on finding the best solution for a medical problem. For it is not possible today to develop anything innovative in isolation.

You have experience yourself as a young entrepreneur. What are the biggest challenges for start-ups and how can MTIP help to overcome them?
In the case of start-ups in medical technology I see two big challenges. First of all, it is important to address the question of certification or regulatory approval early on. Secondly, young entrepreneurs have to take care from the outset that they already define a patent strategy when they are setting up the company. We can offer assistance here with established experts in the field.

MTIP has recently set up home in Allschwil at the Swiss Innovation Park of Northwest Switzerland. Is it your aim to collaborate with the technology and innovation ecosystem and to pool resources?
The whole Department of Biomedical Engineering and the High-Tech Research Centre of the University of Basel have just moved into the temporary premises in Allschwil. To ensure that the collaboration is efficiently organized in a spirit of partnership, we have also moved in there for the time being and are managing innovations and start-ups in this setting. Where we will be based in future has not yet been decided, but we are open to cooperation with the Swiss Innovation Park of Northwest Switzerland.

The search for venture capital in Switzerland is challenging and time-consuming, MTIP promises to make this easier. Are you overrun today by requests for funding?
The number of queries has doubled since we went public. Now we have to evaluate the best projects.

And what does a project have to offer in order to get support from MTIP?
An important point is innovation: we want to know what sets it apart from the state of the art so far. Another important question is whether it is a technology that can be protected by a patent or a trade secret and what market potential the project offers. We place great value in particular on a good management team: if competencies are lacking, we are happy to help in the search for suitable employees. Traditional venture capital companies invest their money and wait for the exit of the company.

Where do you see MTIP in five years?
The aim is to have a presence in Switzerland with a very good portfolio of start-ups. An organization like i-net can play an important role for MTIP and it would be great if the shared network idea could lead to new projects.

Interview: Fabian Käser and Nadine Nikulski, i-net

*Christoph Kausch has a sound knowledge of strategic management and experience in bringing innovations to market. Before founding MTIP, he led the global strategy department of Syngenta for several years. Prior to this, he was Managing Director at Hafiba AG, a boutique investment company, where he is still a member of the board of directors. He started his career at McKinsey & Company where he had specialized in private equity and life sciences.

Christoph Kausch studied mechanical engineering at the TU Munich and at the Massachusetts Institute of Technology Management (MIT) in Boston. He completed his PhD in innovation & technology management at the University of St. Gallen and at Harvard Business School.

About MedTech Innovation Partners AG
MedTech Innovation Partners (MTIP) headquartered in Basel, is an early-stage investor focusing on health technologies. MTIP offers more than traditional venture capital, delivering access to business building expertise, a systematic approach to intellectual property management, recruitment and a unique interdisciplinary culture for the entrepreneurs and start-ups that MTIP works with.
A local network which consists of well-known Swiss universities and research centres specializing in medtech, gives MTIP an early access to research outcomes. Furthermore, an international innovation ring offers scientists and entrepreneurs ideal conditions for bringing innovations to market.
Website of MTIP

 

report Life Sciences

Myovant Sciences increases research expenses

16.11.2017

report Life Sciences

Novartis presents current state of research

13.11.2017

report Life Sciences

«It would be very good to try to widen everyone’s vision of what you can do with biology –...

11.06.2015

Neil Goldsmith and two colleagues started working on Evolva in 2001, moving its headquarters from Denmark to Reinach in Switzerland in 2004. The «Brewers of 21st Century» discover and provide ingredients produced with the help of biologically engineered yeast. CEO Neil Goldsmith explains in the i-net interview how this works and why, initially, they received their seed money for another business model.

You call yourselves the «Brewers of 21st Century». What does that mean?
Neil Goldsmith*: We make ingredients for food or cosmetics by genetically engineering baker’s yeast and brewing it. If we want to make Stevia for example, we take the genes the plant uses to make that molecule and put those genes into the yeast so the yeast can make the molecule. We then ferment the yeast by brewing, just like with beer. The yeast takes up the sugar, turns it into Stevia and pumps it out; we filter off the yeast and have Stevia in the «broth» which we can purify out.

Why should biosynthetically brewed Stevia be better than the grown one?
The Stevia plant makes a lot of sweet molecules. However most of these molecules start to taste bitter when you use a lot of them – that is why the current Stevia-based soft drinks only have about a one-third reduction in the level of sugar or high-fructose corn syrup. Now, the plant also makes some molecules that do not give a bitter taste, but it makes very small amounts of them. Therefore it’s not economic and sustainable to grow the plant to produce these molecules. But creating Stevia by brewing it is a very promising alternative.

So with yeast, you can make almost anything?
In principle, we can make anything that occurs in nature. The key is combinatorial genetics. For the yeast to turn sugar into Stevia it needs 32 genes that have to work together: Finding what those genes are and optimizing them so they all work well together is what we are founded around. It’s in principle more complex than making an antibody or an enzyme, because that’s just one gene or one protein. We were intrigued by the idea of taking the combinatorial thinking of chemistry and applying it to genetics. You can use our approach to make old molecules in better ways – which is what we do now – or you can use it to make new molecules, which was the original idea. You would get new structures that have never been seen before and they might cure diseases.

Evolva has pivoted from pharmaceuticals to the nutrition sector – how did this come about?
We pivoted because we weren’t finding interest from the pharma companies for our technology. Instead, food and cosmetic companies were approaching us. We initially agreed to work for some of these companies just to bring some money in. After a while, we started to understand that the business itself looked interesting. Then we had to persuade our investors, who invested in us because we were going to develop a new diabetes drug, that switching to food and other ingredients made sense.

A completely different market?
Yes and with lower margins. But also less risky, with lower development costs and much less competition compared to pharma. Today we’re actually a network business; our analogy is a railway company. Two molecules that might be very, very different – take vanillin and benzocaine, an anaesthetic – are actually on the same railway track from the yeast point of view. So we want to build and own this track and own that network. If we invest in making vanillin well, that also gets us towards benzocaine. It was interesting to realise that there are many different products by simply pursuing the same track. Maybe they’re not all so big in market terms, but they are built on the same research and can be produced with the same infrastructure: Everything is brewing. So you can produce one product this week and another one next week. Also it is possible to respond very quickly to market demand.

Pharma start-ups are mostly being exited through a trade sale. Will Evolva be a different story?
The food and personal care industries have seen very little transformative innovation. Companies typically spend only very little on R&D and that gives the opportunity to build something transformative. In pharmaceuticals you can’t do that because the big pharma companies will spot you and adapt pretty quickly. In a way it’s a problem for the biotech industry that it has stayed so reliant on pharmaceuticals and not innovated its business models for 30 years. In the ingredients business everyone collaborates with everyone, and by partnering and building a network you can get the resources you need. Using the railway analogy: If you want to build a track from Basel to Geneva and you want to fund this track, you fund it by selling off Yverdon-les-Bains to someone who wants this station, meaning this product. In pharma, this way of thinking is not possible. So I really believe we can grow our business organically and remain an independent company.

What is your business strategy with Evolva?
We want to make products where there is a clear benefit, not just that we can make it cheaper but also that we can make it better, like Stevia. We don’t want to compete with the big companies. Instead we are looking to develop products which have a new market or can open up a new market. In a nutshell, we focus on «high priced, small volume» in the health, wellness and nutrition industry. One of our latest products is Nootkatone, a grapefruit fragrance that turned out to be very good at killing and repelling the ticks that transmit Lyme disease. There is an unmet need for that and we have a product that is very safe, it smells nice and it’s very good at both repelling and killing the ticks.

Will you do the production yourself or enter into a partnership for the production?
At the moment, all we have is labs. In some cases we have a partner who does it, and in other cases we pay someone on a contract basis. But in the long term we want our own brewery, because it’s a business with constant improvement and ultimately, you need to have the bug and the brewery integrated. If you want to be flexible in manufacturing, it needs to be your facility. But this is a long-term plan that costs many tens of millions of dollars. We don’t want to do that too quickly and then find that we can’t sell enough products quickly enough to justify that.

Would you do that in Switzerland or somewhere else in the world?
I wouldn’t completely rule out Switzerland; it’s obviously a high-cost location for manufacture, but it’s possible to run these facilities pretty lean and there is a value in this market to being Swiss. If you’re selling a food ingredient and it’s a Swiss food ingredient you get a certain quality association. We don’t know the answer yet, but I think there will be something in the States and something in Europe.

Let’s talk more about the buzz around high-tech food, which is sustainable and healthier. There seems to be a lot of attention surrounding this issue that suggest you may be in the right place at the right time.
It’s clear that a lot of megatrends in society converge in the space we occupy at present. It started about four to five years ago, and it has taken a few years to build a momentum. But we don’t know how it will play out in reality. What’s going to be interesting is that food is fundamentally a very conservative culture, and innovation– by definition – is not. So how do you marry these cultures? If you look at the big food companies and if you take brewing beer, it’s a very conservative industry. But the rise of craft brewing is really challenging that. There are people experimenting with different flavours of beer made from different ingredients. The same could happen with synthetic biology: Innovation happens in small companies.

Is there a technological driver behind this trend?
I don’t see the development as technology driven; it’s rather about adapting technology to these needs because technology sort of arises for other purposes. Look at the smart farming movement: It’s just applying sensors; now you can image every single corn plant in the field and data mine. I think it’s more that various technologies have matured to the point where they can start to be used here, because they need to be robust and relatively affordable, and then you start to assemble them together. Now you can set up a biotech lab in your garage and start to do stuff – this is new for biotech. And it does raise important questions as to how we control it. There is no way you can track every single garage around the world.

What is the potential in this region; should there be more attention for this field?
I think it would be very good to try to widen everyone’s vision of what you can do with biology, because it’s not just cancer drugs. I think the limiting factor is investors, and that’s really why there are so few people in this space currently. Traditional biotech investors are investing in medical stuff – we only got our money because we started off doing that. We would never have got the money if we started off doing what we now do. I think you need new kinds of investors.

They are mostly likely to be found in Silicon Valley.
Yes, we need people that really think hard and deep about where trends will be and start playing there. Europe is not so good at doing that; it only follows. We need a different mindset. If you look at Silicon Valley, most of the people who are in the nutrition area come from the IT sector, whereas the biomedical guys find it very hard to get out of their way of thinking. The UK investment in food and agricultural research has declined, and you don’t have equivalents in Europe to the movement in the US of teaching farmer’s kids technology.

Next year will be a big year for you with Stevia hitting the market, will that be a booster? What do you expect?
We have a product we are very confident of in terms of taste and competiveness. Potentially, it’s very big. It’s clearly got the possibility of being a billion-dollar product in terms of revenue. But will it get there? We don’t know. It will take some years to get into the market. These products typically have 5 to 10 years to achieve peak sales, because we’re in a slow-moving industry. Unlike a pharmaceutical product that gets picked up immediately by the healthcare industry, market incumbents in the nutrition sector don’t change their flagship products and brands overnight. They normally extend their product lines gradually.

Interview: Thomas Brenzikofer and Nadine Nikulski, i-net

*Neil Goldsmith is co-founder and CEO of Evolva SA in Reinach. He has a 25-year track record in building successful biotech companies, among them TopoTarget A/S and Personal Chemistry AB. Earlier in his career, he was Chief Executive Officer of Auda Pharmaceuticals, GX Biosystems and PNA Diagnostics.
He received a first-class BA Honours degree in Zoology from Balliol College, University of Oxford, and is a graduate of the New Enterprise Programme at the Scottish Enterprise Foundation, University of Stirling.

About Evolva
Evolva was founded by three people, Neil Goldsmith and two others as a spin-off of the US company Phytera, that was doing plant cell culture, had a lot of plant genes and was trying to find a way to put them in a host that was more robust than plant cells. Phytera IPO failed and the company needed to cut costs. It was clear that the project of putting the genes into yeast was going to be one of the things to be cut. Neil Goldsmith wanted to take this out and found a company around it. So in 2001 they set up Evolva – initially in Denmark – and raised some seed money just before 9/11. In 2003, they thought they had enough to raise a proper round as the market had improved. At this point the three partners already wanted to change our headquarters to another location than Denmark, as the country «wasn’t world class» in the field of small molecule pharmaceutics. In addition, they wanted to be where there was more money available. They looked at the States, Canada, UK but ended up choosing Switzerland.


Video explaining the fermentation process

report Life Sciences

NousCom wins over investors

06.11.2017

report Micro, Nano & Materials

Scale measures weight of living cells

27.10.2017

report Production Technologies

«Ungenutzte Biomasse hat ökonomisches Potenzial - dieses Bewusstsein ist enorm gewachsen»

09.04.2015

«Biotechnological use of untapped biomass for the future bioeconomy of Switzerland» heisst der i-net Cleantech Technology Event, der am 21. April 2015 an der Hochschule für Life Sciences FHNW (HLS) in Muttenz stattfindet. Philippe Corvini, Professor für «Environmental Biotechnology» und Leiter des Institutes für Ecopreneurship an der HLS, erklärt im i-net-Interview, warum der Anlass einen Besuch wert ist und welche Chancen die Biotechnologie für die Nordwestschweiz birgt.

Sie leiten das Institut für Ecopreneurship an der Hochschule für Life Sciences an der Fachhochschule Nordwestschweiz. Was heisst Ecopreneurship genau?
Philippe Corvini: Der Begriff «Ecopreneurship» verweist auf die Tatsache, dass Umwelttechnologie auch zur effizienteren Ressourcennutzung sowie zu weniger Energieverbrauch beitragen kann und damit auch ökonomisch sinnvoll ist. Das heisst, neben Forschung zu betreiben möchten wir auch zum unternehmerischen Handeln beim Einsatz von Umwelttechnologien anregen. Wir tun dies in drei Bereichen: Bei der Umweltbiotechnologie und Umwelttechnik geht es um den biologischen Abbau und den physikalisch-chemischen Rückhalt von Schadstoffen wie auch um die Rückgewinnung von wertvollen Stoffen. In der Ökotoxikologie untersuchen wir die Effekte von Chemikalien oder neuen Materialien auf Organismen und in der Gruppe für nachhaltiges Ressourcenmanagement geht es um Gesamtbetrachtungen die zu ressourceneffizienter und umweltfreundlicher Produktion führen.

Wie kann Biotechnologie unsere Umweltprobleme lösen?
In der Umweltbiotechnologie macht man sich lebendige Organismen zunutze, die Schadstoffe entweder zurückhalten beziehungsweise akkumulieren oder aber als Nahrung aufnehmen und in weniger toxische Stoffe umwandeln können. Dabei kommen nicht nur Bakterien zum Einsatz, sondern auch Pilze, Algen und andere Pflanzen. Ein gutes Beispiel ist die Abwasserreinigung: Bakterien werden dem Abwasser zugesetzt und ernähren sich, indem sie gewisse Stoffe aus dem Abwasser abbauen. An einem bestimmten Punkt gibt es dann zu viele Bakterien und es entsteht überschüssiger Schlamm. In einem Faulturm wird dieser Schlamm dann von anderen Mikroorganismen verdaut und dabei entsteht Biogas. Ein weiteres Beispiel dafür, wie Biotechnologie Umweltprobleme lösen kann, sind Biofilter: In diesen wirken Bakterien, die sich von Lösungsmitteln aus der Abluft ernähren und so Schadstoffe abbauen.

Durch Biotechnologie versucht man also biochemische Prozesse so zu steuern, dass sie für die Umwelt keine ungünstigen Auswirkungen mehr haben?
Tatsächlich dominieren die Themen «Minimierung der Auswirkungen» und «Sanierung» im Umwelttechnologie-Bereich. Es geht darum, den Schaden, der durch menschliche Aktivitäten entstanden ist, zu minimieren oder rückgängig zu machen. Die Forschung an der Hochschule für Life Sciences FHNW geht aber darüber hinaus. So untersuchen wir auch, wie neue Substanzen, die etwa über Medikamente in die Umwelt gelangen, abgebaut werden können. Von daher haben wir viele Schnittstellen zur pharmazeutischen Biotechnologie. Denn wenn man weiss, wie Bakterien einen Stoff abbauen können, ist das auch für die pharmazeutische Industrie interessant. Ein Beispiel ist das Antibiotikum Sulfamethoxazol. Wir haben ein neues Bakterium gefunden, das infolge einer Genmutation gegenüber Sulfamethoxazol resistent ist und sich sogar von diesem ernähren kann.

Wo sehen Sie derzeit das grösste Potenzial für Umweltbiotechnologie?
Neben den oben erwähnten Einsatzmöglichkeiten bietet die Nutzung von lebenden Mikroorganismen aber noch viel mehr. Sie sind auch wichtige Hilfsmittel, um ungenutzte Ressourcen weiter zu verwerten. Abwasser und Bioabfälle aus agro-industriellen und kommunalen Quellen werden gereinigt, beziehungsweise «hygienisiert», verbrannt oder noch in Biogas umgewandelt. Für die Schweiz am Relevantesten ist sicherlich Holz. Diese Biomassequelle sollte noch besser verwertet werden. Altholz oder Holzabfälle zu verbrennen bedeutet, die stofflichen Verwertungsmöglichkeiten nicht zu nutzen. Im Holz stecken wertvolle Moleküle und chemische Verbindungen, die man extrahieren kann. Neben Zellulose für die Produktion von Bioethanol ist besonders Lignin von grossem Interesse. Dabei handelt es sich um ringförmige Strukturen, die zur Herstellung von Chemikalien für die Industrie sehr wichtig sind. Bis heute werden diese ringförmigen Verbindungen ausschliesslich aus fossilen Quellen gewonnen. Holz wäre hierfür die sehr viel nachhaltigere Ressource.
Vielversprechend ist auch die Konvergenz von Umweltbiotechnologie und neuen Technologien wie die Nanotechnologie. Zum Beispiel kann der Einsatz von Nanomaterialien die biologische Sanierung von ausgelaufenem Öl effizienter machen. Zwar existieren im Meer natürlicherweise Mikroorganismen, die Öl abbauen können. Doch dafür brauchen sie viel Zeit, weil ihr Wachstum durch die Verfügbarkeit von Nährstoffen wie Stickstoff und Phosphor limitiert ist. Durch gezielte Zufuhr der limitierenden Nährstoffe kann die Abbaurate beschleunigen werden. Dies geschieht in der Regel durch Beigabe von herkömmlichem Dünger. Allerdings verdünnt sich dieser im Meer ziemlich schnell. Mit dem HLS-Kollegen Dr. Patrick Shahgaldian haben wir sehr poröse Silica-Partikel, deren Oberfläche wasserabweisend ist, mit Stickstoff und Phosphor gefüllt. Wegen der Eigenschaften dieser Partikel kleben diese dann förmlich am Öl und stellen dort gezielt Stickstoff und Phosphor für das bakterielle Wachstum bereit, was die Abbaurate des Rohöls signifikant erhöht.

Sind solche Anwendungen schon marktreif?
Einige Technologien werden bereits zur Dekontamination von Abwässern im Bergbaubereich, zur Rückgewinnung von Metallen oder für die Fermentierung von Bioabfällen eingesetzt. Zudem springen traditionelle Chemiefirmen hinsichtlich Bioabfallverwertungen auf den Zug auf, und es gibt auch interessante Chancen für Startup-Unternehmen. Generell ist festzustellen, dass derzeit unter dem Begriff Bioökonomie eine sehr diversifizierte Szene mit viel Wachstumspotenzial am Entstehen ist.

Und welche Rolle spielt dabei die Nordwestschweiz?
Es gibt schweizweit, aber auch global gesehen, noch kein etabliertes Bioökonomie-Zentrum. Europa scheint aktuell eine führende Rolle einzunehmen, wobei Asien stark aufholt. Für mich und mein Institut ist die Region Nordwestschweiz sehr interessant, weil wir hier neue Begeisterung für diesen Bereich entfachen können. Das Bewusstsein darüber, dass ungenutzte Biomasse ein ökonomisches Potenzial darstellt, ist in den vergangenen Jahren enorm gewachsen.

Am 21. April 2015 findet an der Hochschule für Life Sciences in Muttenz der i-net Cleantech Technology Event «Biotechnological use of untapped biomass for the future bioeconomy of Switzerland» statt. Was erwartet die Teilnehmer?
Die Veranstaltung, welche die HLS und i-net in Zusammenarbeit mit Swiss Biotech gemeinsam in unserem Haus durchführen, bietet eine tolle Übersicht über die Themen Biotechnologie und Bioökonomie. In den Englischen und Deutschen Referaten geht es um das Potential von Bioökonomie in Europa. Man erfährt von konkreten Beispielen und lernt Zulieferer, Anwendungen oder Forschungsprojekte kennen. Wir hoffen, dass wir interessierte und neugierige Teilnehmer mobilisieren können. Immerhin ist es der erste Anlass in der Region, der sich spezifisch diesem Thema widmet.

Interview: Sébastien Meunier und Nadine Nikulski, i-net

Philippe Corvini ist Professor für «Environmental Biotechnology» und Leiter des Institutes für Ecopreneurship an der Hochschule für Life Sciences FHNW. Er arbeitet an verschiedenen wissenschaftlichen internationalen und nationalen Projekten. Er ist Vize-Präsident der European Federation of Biotechnology und repräsentiert und leitet die Sektion «Environmental Biotechnology». Daneben ist er Scientific Advisor und Mitbegründer der Inofea AG und gehört einem Beratungsgremium des Bundesamtes für Umwelt an. Weiter ist er Co-Leiter der Plattform «Bioresource Technology» des KTI F&E Konsortiums Swiss Biotech und hält zwei Professuren am Yancheng Institute of Environmental Technology and Engineering der Nanjing University.

Philippe Corvini hat in Nancy Biotechnologie studiert und erforschte nach seinem PhD in einem interdisziplinären Projekt in Deutschland, wie Bakterien Schadstoffe abbauen. Er hat die Habilitation an der RWTH Aachen bekommen und hat sich nun an die Universität Basel umhabilitiert.

report Life Sciences

The European Antibody Congress opens its doors

17.10.2017

report Invest in Basel region

U.S. turns to Swiss-style vocational training

16.10.2017

report Life Sciences

«With the innovation park, the life sciences hub of Northwest Switzerland will secure its ...

09.07.2014

Professor Joachim Seelig has been Professor of Biophysics at the University of Basel since the inception of the Biozentrum and is still actively engaged in research. He is also on the board of the SIP NWCH association (Swiss Innovation Park of Northwest Switzerland) and is Head of the i-net Technology Field of Life Sciences. In an interview with i-net he speaks about the future of the life sciences and explains why the SIP NWCH is important for Basel as a research center.

The pharmaceutical hub of Basel - and Northwest Switzerland - is undisputed today. Will this still be the case in 30 years?
Joachim Seelig*: It’s natural to wonder what will be in 30 years’ time. When I came to Basel 40 years ago, there were only chemical companies here. In the big four of Ciba, Geigy, Sandoz and Roche, the research heads were qualified chemists. Today these positions are occupied by molecular biologists or medical specialists. The chemical industry has been transformed in the last few decades into a pharmaceutical industry. Clariant is still a chemical company, and the agrochemical company Syngenta has its headquarters here, although they are far less deeply anchored in the region than Roche and Novartis. So when we look back, we see that Basel has changed a lot as a research center, and this change will also continue in the next 30 years.

What part did the Biozentrum of the University of Basel play in this development?
The Biozentrum brought together various sciences, such as chemistry, physics, biochemistry, structural biology, microbiology and pharmacology. The founding fathers of the Biozentrum had an inkling of the revolutionary changes to come from biophysics and molecular biology, it was hoped that the collaboration of these various disciplines could lead to something completely new. I believe it was a very shrewd move to bring these different fields together, and it has indeed also had some important results.

And where does the Biozentrum stand today?
Today, the focus is very much on fields such as neurobiology and microbiology, while biophysics and pharmacology take more of a back seat. This may well make sense and bring majors successes. But my personal interest goes in other directions.

So where should the focus be instead?
For the input on the Swiss Innovation Park of Northwest Switzerland, interviews were held with around 30 people from the life sciences with the aim of establishing what subjects will play an important role in the future. Three subject areas were identified in the process. Firstly, there is Biosensing, which links biology and electronics - so-called electroceuticals, for example, are pills that do not deliver their active substance until they arrive at a predetermined site in the body. The second subject area is Biomaterials – an example here could be a seed in which every grain is packed in an energy package, which even provides nutrition and develops when it is sown in dry conditions. The third subject area is Large Number Crunching - the ever more personalized medicine is leading to huge volume of data; so methods need to be developed that support the doctor in efficiently analyzing and evaluating the data.

How well positioned is Northwest Switzerland in terms of these three megatrends?
It has to be realistically acknowledged that we are not very strong in almost all three areas. It is precisely this that the Swiss Innovation Park Northwest Switzerland, which will start up at the beginning of 2015 in Allschwil, is designed to change.

Are there already concrete projects?
Yes, the research project Miracle of Hans-Florian Zeilhofer and Philippe Cattin from the Department of Biomedical Engineering in the Medical Faculty of the University of Basel will be the first sub-tenant. The Werner Siemens Foundation, based in Zug, will support this project for five years to the tune of 15.2 million francs in total. The aim of the project is to miniaturize laser technology for endoscopic surgery. Many areas, such as robotics, imaging and diagnostics, sensor technology and micromechanics, play a role in this project. Roughly speaking, it is a medical technology project in which electronics, robotics, imaging and medicine come together.

How big will the innovation park be in the future?
It is assumed that 1000 people and later perhaps 2000 people will be employed there. This critical mass is essential. A role model here could be the technology park in Eindhoven. Ten years ago, Philips opened its research center there with about 2000 employees for collaboration with external groups and companies. Today around 8000 people work there, and sales of around a billion francs are generated. Many new companies have settled there. The engagement of companies such as Roche, Novartis, Actelion and Syngenta will be crucial for the SIP NWCH. But of course outside companies and start-ups have to be attracted.

The University of Basel is not regarded as very innovative; does something not have to happen there?
I cannot let this statement stand unchallenged. Only recently a study was conducted on how efficiently a university works – and the University of Basel came out of this very well. The University of Basel is a full university. The natural sciences represent only a small part, i.e. at most around 2000 of the 12,000 students in total. So the figures of Basel University cannot be compared directly with the ETH or EPFL, which can concentrate entirely on technologies. At the Biozentrum we are engaged mainly in basic research, while applied research is left to others. Nevertheless we have generated a number of spin-offs. For example, Santhera and 4-Antibodies had their first laboratories in the Biozentrum.

What could be done to get more spin-offs in the region?
Attractive conditions must be created in the innovation park, and scouting ought to be institutionalized at the university, so that more projects are developed. I think we are ideally situated here in Northwest Switzerland. The innovation potential in Basel at least is huge, and there are already many start-ups that are doing outstanding work.

Are there issues that Northwest Switzerland could miss out on?
One point that is rather underestimated in Basel is the influence of computer science and the internet on biology and the life sciences. When it comes to information technology we certainly have some catching-up to do. Personally I believe in a stronger link between biology and electronics. I already endeavored some years ago to establish a department for bioelectronics at the university, but I was unable to push it through. But in the innovation park it is essential that we establish this link. It is important to attract the right talents. It is not only Google that should be attractive for really good IT specialists in the future, but also companies such as Roche and Novartis.

You have been involved in i-net as Head of the Technology Field Life Sciences for some years – what role should, can, ought i-net increasingly play in this field?
Basically people are grateful for and in many cases also excited by what i-net is doing for them. As a neutral link between the various actors, i-net can and will also play a major role in the Swiss Innovation Park in future. The life sciences companies are experiencing frequent personnel changes due in many cases to the global operations of these companies. It is becoming ever more difficult to find contact partners who have the authority to make decisions and at the same time have a profound knowledge of our region. The decision makers in the private sector are too tied up in the requirements of their jobs to find time for honorary activities in important bodies in our region. Life in the private sector has become faster and more global, and the local and regional networks suffer as a result. It is therefore important that a professional organization in the shape of i-net takes on this role and institutionalizes it.

Interview: Stephan Emmerth and Nadine Nikulski, i-net

*Professor Joachim Seelig was one of the first researchers of the Biozentrum at the University of Basel and was Head of this Department between 1997 and 1999 and also from 2000 to 2009. He is a member of the board of the SIP NWCH association (Swiss Innovation Park Northwest Switzerland) and serves in an honorary capacity as Head of the i-net Technology Field Life Sciences.

report Life Sciences

Novartis pursues digitalization through cooperation

13.10.2017

report Micro, Nano & Materials

Clariant extends shelf life of nutraceuticals

11.10.2017

report Micro, Nano & Materials

«Nanomedizin ist ein zentrales Standbein der Medizin der Zukunft»

05.06.2014

Notfälle, Pikettdienst, lange Arbeitszeiten: Trotz einem herausfordernden klinischen Umfeld ist es für Professor Patrick Hunziker (im Bild links) sehr wichtig, seine ärztliche Aufgabe am Patienten mit dem akademischen Auftrag einer Uniklinik, der Weiterentwicklung der Medizin, zu kombinieren. Deshalb widmet er sich in ruhigeren Momenten mit seiner Forschungsgruppe der Erforschung neuer Diagnostik- und Therapiemethoden der Nanomedizin. Der Kardiologe arbeitet als stellvertretender Chefarzt der Klinik für Intensivmedizin des Universitätsspitals Basel und gilt als ein Pionier der Nanomedizin. Neben seinem anspruchsvollen Pensum als Arzt und Forscher ist Hunziker ausserdem Mitbegründer der CLINAM-Stiftung und des Start-ups «Speroidals GmbH».

Beat Löffler (Bild rechts) arbeitet seit Jahren eng mit ihm zusammen. Er leitet die CLINAM-Stiftung und betreibt intensiv Öffentlichkeitsarbeit für die Nanomedizin. Gemeinsam haben die beiden den jährlich in Basel stattfindenden CLINAM-Summit zu einem international beachteten Kongress für Nanomedizin gemacht. Im Interview erklärt Patrick Hunziker, warum der Begriff Nanomedizin wohl bald verschwindet und Beat Löffler zeigt auf, warum zehn Minuten Redezeit an einem Kongress ausreichen.

Herr Professor Hunziker, wie sind Sie zur Nanomedizin gekommen, gab es da ein besonderes Schlüsselerlebnis?
Patrick Hunziker*:
Ich arbeitete in den späten 90er-Jahren in der Kardiologie und da wurde mir einmal die Frage gestellt, ob ich wisse, was Nanotechnologie sei. Ich hatte ehrlich gesagt wenig Ahnung von diesem jungen Feld und nahm deshalb die Einladung zu einer Tagung von Nanowissenschaftlern in Bern an. Ich habe dort viel über die wissenschaftlichen Grundlagen gehört, aber mich interessierte vor allem, wie die Nanomedizin einen Beitrag zur Entwicklung der Medizin und letztlich zum Wohlergehen der Patienten leisten kann. Nanomedizin war zu diesem Zeitpunkt noch ein völlig unerforschtes Feld. Wenn man 1998 nach Nanomedizin gesucht hat, fand man vielleicht 200 Referenzen in der Fachliteratur, die praktisch ausschliesslich als «Science Fiction» einzustufen waren.

Und das hat Sie nicht stutzig gemacht?
Hunziker: Ich fragte mich, was davon Realität werden könnte. Nach einigen Jahren der Forschung auf diesem Gebiet traf ich Beat Löffler, der in Basel eine Konferenz über Nanomedizin machen wollte. So gründeten wir 2007 die CLINAM-Stiftung. Beats primäres Interesse war, die Nanomedizin interdisziplinär vorwärts zu bringen, ihm schwebte ein internationales Expertennetzwerk vor. Wir initiierten die Gründung der Europäischen Gesellschaft für Nanomedizin, bauten das European Journal of Nanomedicine auf und fingen unsere Kongressreihe an. Dank der CLINAM-Stiftung konnten wir von Industrie bis Akademie alle Aspekte der Nanomedizin Stück für Stück abdecken und den Dialog fördern.

Wie hat sich das Thema Nanomedizin in Tagungen entwickelt?
Beat Löffler*: Als wir im Jahr 2007 in Griechenland an einer Tagung der European Technology Platform on Nanomedicine teilnahmen, kamen etwa 100 Teilnehmer, aber der einzige anwesende Mediziner war Patrick Hunziker – er war ein Pionier. Alle anderen waren Biologen, Pharmakologen, Ingenieure und Chemiker. Wir fragten uns, wo die Mediziner geblieben waren und entwarfen daraufhin eine eigene Konferenz, die 2008 erstmals in Basel stattfand. Bis heute beginnt sie mit Klinikern, welche über ungelöste Probleme in der Medizin sprechen. Danach kommen Experten der Nanotechnologie zum Zug, die berichten, wie man diese Krankheiten mit nanotechnologischen Lösungsansätzen angehen kann. Mit den Jahren kamen Fragen der Gesetzgebung, Diskussionsrunden über die Risiken und Chancen sowie erste Ergebnisse für Medikamente und Geräte in präklinischen und klinischen Studien hinzu. Von Beginn an waren auch die Themen Ethik, Toxizität und Armutserkrankungen wichtig – das hatte in diesem Gebiet Pioniercharakter.

Was ist denn Nanomedizin genau?
Hunziker: Nanowissenschaften beschäftigen sich mit einer Lücke. Von der Makroebene führte die Miniaturisierung zu Objekten der Mikrotechnologie; auf der anderen Seite beschäftigen sich Chemiker mit molekularen Strukturen. Dazwischen, also zwischen der Mikroebene und der Welt der Atome und Moleküle, liegt der Nanometer-Bereich. Allerdings war das Verständnis hierfür mangels guter Untersuchungsmethoden bis gegen Ende des letzten Jahrhunderts sehr beschränkt. Dies gilt auch für die Medizin: Körperzellen bestehen aus Nanostrukturen, die das Leben überhaupt ermöglichen. Dank der Nanomedizin hat man heute ein grösseres Verständnis für die Lebensprozesse und wir haben gute Fortschritte bei der Diagnose und der Therapie von Krankheiten erzielt. Es wird immer offensichtlicher, dass die Nanomedizin eines der ganz zentralen Standbeine der Medizin der Zukunft ist.

Wie reagieren Sie auf die Ängste, die es in der Bevölkerung zum Beispiel vor Nano-Robotern im Gehirn gibt?
Hunziker: Die Frage von Nutzen und Risiken war von Anfang an ein Thema. Es ist wichtig, dass man auch in der Nanomedizin wie für alle Technologien die Möglichkeiten und Gefahren genau untersucht und abwägt. Ich verwende Nanotechnologien nur dort, wo ich nach Prüfung aller Risiken einen echten Mehrwert für den Patienten sehe. Da bin ich sehr kritisch. Aber wenn ich das nicht wäre, würde ich ja mein Berufsziel verfehlen. Es ist sehr wichtig, dass die Forschung von allen Verantwortlichen, also den Forschern, den Gutachtern und den Regulierungsbehörden so geprüft wird, dass Risiken für die Patienten praktisch ausgeschlossen werden können.

Was ist die Rolle der CLINAM-Stiftung und welche Aufgaben hat diese?
Hunziker: Das Ziel der Stiftung ist es, die Anwendung der Nanowissenschaften in der Medizin zu fördern, ihre Chancen und Risiken zu erkennen und sie zum Vorteil für den Patienten einzusetzen.
Löffler: Die Stiftung möchte ein Netzwerk von Fachleuten der Nanowissenschaften aufbauen. Dies ist uns weitgehend gelungen, die Stiftung hat heute internationale Kontaktpunkte und es herrscht ein reger Austausch. Fast ein Drittel der 500 Teilnehmer des Kongresses sind Mediziner und Kliniker. Aber auch der Anteil von Teilnehmern aus der Industrie wächst stetig. Der jährlich in Basel stattfindende CLINAM-Summit für Nanomedizin und «Targeted Medicine» ist eine weltweite Plattform für Experten. Nun steht der 7. Kongress bevor und wir freuen uns, dass die internationalen Regulierungsbehörden den CLINAM-Summit als neutrale wissenschaftliche Plattform ausgewählt haben um das «International Regulators Meeting on Nanotechnology» durchzuführen. Neben diesem Meeting an welchem ausschließlich Regulierungsverantwortliche zugelassen sind, werden die Regulierungsverantwortlichen aus allen fünf Kontinenten unter der Leitung der Generaldirektion der EU auch eine öffentliche Debatte über die weltweite Harmonisierung der Gesetzgebung sowie die einheitliche Definition von Nanomedizin führen.

Neben Ihrer Aufgabe als Chefarzt leiten Sie eine Forschungsgruppe aus der sogar das Start-up «Speroidals GmbH» hervorging. Wie funktioniert das?
Hunziker: Ich erhoffe mir, dass durch die Nanowissenschaften Einsichten gewonnen und zum Wohle der Patienten umgesetzt werden können. Aber der Sprung von der akademischen in die industrielle und dann in die klinische Phase ist schwierig, die regulatorischen Hürden sind sehr hoch. Die Nanomedizin dringt deshalb nur sehr langsam bis zu den Patienten vor. Das heisst, dass es in dieser Phase sehr wichtig ist, dass sich Forscher frühzeitig Gedanken machen, wie aus ihrer Idee ein umsetzbares Produkt wird, und sich die Kliniker überlegen, wie sie die neuen Möglichkeiten in die Behandlungsstrategien integrieren. Ich möchte eigentlich nicht sehen, dass eine Schweizer Innovation wegen fehlender Entwicklungsmöglichkeiten in die USA verkauft werden muss. Diese Arbeitsplätze würde ich lieber in der Schweiz behalten.

Existiert eine Zusammenarbeit mit «Big Pharma»?
Löffler: Pharmafirmen sind natürlich mit Begriffen wie «Nanotechnologie» vorsichtig und beobachten das Technologieumfeld genau, um nicht aufgrund eines Technologie-Labels eine falsche Botschaft zu vermitteln. In den USA und in England ist der Terminus Nanomedizin als «Anwendung der Nanotechnologie in der Medizin» heute bereits gut akzeptiert. Der Begriff «Nanomedizin» braucht noch etwas Zeit, bis alle Stakeholder ihn unbeschwert nutzen. Dass der Begriff immer klarer definiert wird und die Regulierungs-Behörden eine internationale Definition anstreben, hilft stark.
Hunziker: Die Entwicklung neuer Medikamente wird immer teurer. Deshalb müssen auch Pharmafirmen verstehen, welche neuen Geschäftsmodelle realistisch sind. Bereits heute ist die personalisierte Medizin ein starkes Schlagwort. Die Nanomedizin ermöglicht es, verschiedene Aspekte wie zum Beispiel Medikamententransport im Körper, Rezeptorbindung und die zelluläre Wirkung in einem Objekt zu kombinieren. Es ist also möglich, durch unterschiedliche Kombination dieser Aspekte ein riesiges Spektrum an massgeschneiderten Therapien anzubieten, welche für bestimmte Patienten optimiert werden. Gleichzeitig bedeutet dies aber für die Industrie und für die regulatorischen Behörden auch in vieler Hinsicht ein Umdenken.

Vielen ist noch nicht bewusst, dass die CLINAM, ein weltweit beachteter Summit über Nanomedizin mit mehr als 500 Teilnehmern, in Basel stattfindet. Wie bekannt ist CLINAM und was macht das Besondere aus?
Hunziker: Tatsächlich ist unsere Konferenz in der Region noch immer relativ unbekannt, was im Gegensatz steht zur Bedeutung, die der Anlass weltweit gewonnen hat. Mit der Konferenz wollen wir etwas tun, was gut für die Menschen und für den Standort Basel ist. Heute können wir immerhin sagen, dass unsere Konferenz in der Region Basel bei der siebten Durchführung vielen Fachleuten bekannt ist und die internationalen Opinion Leaders in diesem Gebiet zusammenbringt. Wir möchten sie auch ganz gern in der Region behalten. Vor allem, weil uns am Anfang viele alt eingesessene Basler geholfen haben, unser Projekt in die Realität umzusetzen.
Löffler: Wir haben dieses Jahr internationale Referenten aus 29 Ländern am CLINAM-Summit. Das CLINAM-Konzept ist als «Debate Conference» strukturiert – eine Methode, die ich 2005 entwickelt habe. Jeder Redner hat zehn oder fünfzehn Minuten Zeit, um sein Thema vorzustellen. Das ist wenig, die Speaker müssen den Vortrag sehr gut erarbeiten, um anzukommen. Die Diskussion der Themen in die Tiefe findet im Anschluss an mehrere Kurzvorträge statt und wird später in den Lounges im Foyer vertieft. Das macht CLINAM zu einem sehr lebendigen Anlass.

Wie wichtig ist Öffentlichkeitsarbeit für Sie und CLINAM?
Löffler: Es wäre sehr gut, wenn wir nicht nur Fachkräfte, sondern auch die Öffentlichkeit für unser Thema interessieren könnten. Wir hatten dazu bisher einfach zu wenig Zeit und Kapazität. Patrick Hunziker hat schon öfter Vorträge auch für Laien durchgeführt, um zu erklären, was die Nanowissenschaften sind und was die Nanomedizin genau beinhaltet. Er war auch an Schulen und konnte dieses komplexe Thema den Schülern einfach und verständlich näherbringen. Natürlich würde es uns freuen, wenn unser international ausgerichteter Kongress auch regional bekannter würde. Wir könnten uns zum Beispiel vorstellen, einen Anschlusstag für die breite Öffentlichkeit zu organisieren.
Wie könnte man die Stiftung und den Kongress besser unterstützen?
Hunziker: Wir hoffen natürlich, von der Universität noch mehr Rückenwind zu spüren. Es wäre auch schön, wenn die Finanzierung eines Tages einfacher werden könnte, indem sich der Standort Basel längerfristig für das Projekt CLINAM engagiert und anerkennt, dass es als Unikat förderungswürdig ist. Basel ist ein guter Standort und ich bin sicher, dass die Region von unserem Kongress und der Stiftung profitiert.

Wo sehen Sie die Nanomedizin in 10 Jahren?
Hunziker: Die Nanomedizin wird zu einer Grundlagentechnologie der Medizin der Zukunft. Dies wird so normal sein, dass der Begriff «Nanomedizin» vielleicht sogar verschwindet. Bei den heutigen Smartphones spricht auch keiner mehr von Mikrotechnologie, obwohl dies faktisch der Fall ist – und genau das wünsche ich mir für die Nanowissenschaften. In der medizinischen Diagnostik wird meines Erachtens die Technologie bald angewendet und die personalisierte Medizin wird in 15 bis 20 Jahren Standard sein.

Interview: Ralf Dümpelmann und Nadine Aregger, i-net

*Patrick Hunziker hat in Zürich Medizin studiert und liess sich zum Facharzt für innere Medizin, Kardiologie und Intensivmedizin ausbilden. Ende der 1990er Jahre begann Patrick Hunziker sich als erster Arzt in der Schweiz für die Einführung der Nanotechnologie in die Medizin zu interessieren. Neben seiner Tätigkeit als stellvertretender Chefarzt der Klinik für Intensivmedizin am Universitätsspital Basel ist Hunziker Gründungspräsident der Europäischen Gesellschaft für Nanomedizin (CLINAM).

*Beat Löffler hat in Basel und Berlin Kommunikationswissenschaften, Recht, Philosophie und Politikwissenschaften studiert und war Generalsekretär bei BioValley Upper Rhine. Heute ist Beat Löffler CEO bei der Europäischen Gesellschaft für Nanomedizin (CLINAM) und Inhaber der Loeffler & Associates GmbH.

report ICT

The cloud is key for digitalisation

10.10.2017

report Life Sciences

Myovant therapy effective against uterine fibroids

03.10.2017

report BaselArea.swiss

«Nicht der Standort sondern die regionale Stärke steht im Zentrum»

Die Schweiz sucht nach möglichen Standorten für den Swiss Innovation Park. Und die Region Nordwestschweiz ist gleich mit zwei Projekten («Schweizer Innovationspark Region Nordwestschweiz» und «PARK innovAARE») im Wettbewerb. Ob sich die beiden Parks konkurrieren und was das Label Swiss Innovation Park für sie bedeutet, erklären André Moeri sowie Giorgio Travaglini im folgenden Interview:

Wozu braucht es Innovationsparks, und warum gleich in der Nordwestschweiz?
André Moeri*: Ob es Innovationsparks wirklich braucht, ist eine Frage der Definition. Innovationsparks sind vor allem dann sinnvoll, wenn sie so konzipiert werden, dass sie in der Wertkette der Unternehmensgründung den Techno- und Businessparks vorgelagert sind. Der Fokus liegt auf forschungsnahen Projekten und Produkten, die im Innovationspark schnell zur Marktreife gebracht werden. Insofern ist der Innovationspark eine Art Katalysator, wo Projekte reinkommen und beschleunigt als Unternehmen wieder rauskommen, um dann in der entsprechenden Infrastruktur in der Umgebung angesiedelt zu werden, eben etwa in den Business- oder Technologieparks.

Der Innovationspark als Inkubator, ist auch der PARK innovAARE so konzipiert?
Giorgio Travaglini*:
Mit dem PARK innovAARE entsteht ein Ort, wo die Spitzenforschung des Paul Scherrer Instituts und die Innovationstätigkeit der anzusiedelnden Unternehmen effizient kombiniert werden. Das PSI möchte seine Aktivitäten im Bereich des Technologietransfers weiter ausbauen und seine Forschungs- und Technologiekompetenzen verstärkt Unternehmen zugänglich machen. Durch den PARK innovAARE kann die Zusammenarbeit des PSI mit der Wirtschaft weiter vertieft werden. Die Realisierung kompletter Wertschöpfungsketten unter einem Dach – von der anwendungsorientierten Grundlagenforschung bis hin zur Technologieverwertung durch die Unternehmen – ermöglicht einen überaus effizienten Kompetenz- und Technologietransfer. Der PARK innovAARE ist somit eine unternehmerische Erweiterung für das PSI und vice versa und ermöglicht die Realisierung gross-skaliger Projekte mit und durch die Industrie.

Könnte man also sagen, während der PARK innovAARE sehr eng ans PSI gebunden ist, lehnt sich der Innovationspark Nordwestschweiz eher an die Pharmaindustrie an?
Moeri:
Hierzulande werden laut Bundesamt für Statistik nur rund ein Viertel der Forschungs- und Entwicklungsgelder von Hochschulen getragen, der Rest wird von der Privatwirtschaft geleistet. Damit ist die Schweiz im internationalen Vergleich ein Spezialfall. Von den R&D-Investitionen der Privatwirtschaft konzentrieren sich wiederum 40 Prozent in der Nordwestschweiz. Dieses weltweit einmalige Ökosystem rund um die Life Sciences-Industrie möchten wir zusätzlich stützen und den Innovationspark als wichtiger Teil der Wertschöpfungskette positionieren.
Travaglini: Der PARK innovAARE ist vorrangig ein Projekt der Wirtschaft und wird unter anderem durch global tätige Unternehmungen wie ABB oder Alstom sowie durch KMU getragen. Mit der räumlichen Nähe zum PSI - zur Verfügung stehen insgesamt 5,5 Hektar - mit seinen hoch spezialisierten Forschungs- und Technologiekompetenzen bildet der PARK innovAARE für Unternehmen sämtlicher Branchen ein optimales Umfeld, um Innovationen voranzutreiben und diese schneller zur Marktreife zu bringen.

Warum sollte sich eine Novartis, Roche oder Syngenta am Innovationspark anschliessen, diese haben doch eigene Labors und wollen doch nicht mithelfen, künftige Mitbewerber zu inkubieren?
Moeri:
Es geht natürlich nicht um die bessere Forschungs- und Entwicklungs-Infrastruktur. Es wäre vermessen, hier mit den besten der Welt konkurrieren zu wollen. Unser Vorteil ist, dass wir eine neutrale Plattform bieten, auf der unterschiedliche Exponenten aus ganz unterschiedlichen Bereichen kooperieren können. Im Zentrum stehen nicht nur die klassische Medikamentenentwicklung, sondern auch Innovationen in Life Sciences an deren Schnittstellen Vermischungen mit Medtech, Nano und ICT möglich sind.

Und hierfür haben sie auch das Commitments aus der Industrie?
Moeri:
Ja, auf der Stufe Absichtserklärung haben wir die Zusagen aller wichtigen Player. Wir hatten ja insgeheim gehofft, dass die grossen Firmen wohlwollend auf unser Projekt reagieren würden. Das Echo war dann aber überwältigend: «Endlich jemand, der nicht nur Geld will, sondern auch etwas anbietet», so der Tenor.

Wo steht diesbezüglich der PARK innovAARE?
Travaglini:
Das PSI hat innerhalb der Schweiz eine einmalige Position. Die Grossforschungsanlagen, die wir entwickeln, bauen und betreiben, gibt es in dieser Kombination nur am PSI. Diese ermöglichen Untersuchungen und Entwicklungen, die nirgendwo anders in der Schweiz möglich sind – daher sind wir, vor allem im Bereich der anwendungsorientierten Grundlagenforschung, für innovative Unternehmen per se interessant. Bereits haben etwa 20 international und national tätige Gross- und Kleinunternehmen ihre langfristige, finanzielle Unterstützung sowie die aktive Mitwirkung an der strategischen Entwicklung des PARK innovAARE zugesichert. Diese Trägerschaft soll in den nächsten Monaten noch erweitert werden. Stark vertreten sind Grossunternehmen aus der Energiebranche, die mit unserem Knowhow gemeinsame Projekte lancieren möchten.

Ist PARK innovAARE mehr auf etablierte Unternehmen aus und weniger auf Start-ups?
Travaglini:
Im PARK innovAARE sind sowohl etablierte Unternehmen als auch Neugründungen, wie beispielsweise Spin-Offs des PSI, willkommen. Hinsichtlich Entrepreneurship werden wir hier eng mit der Hochschule für Wirtschaft der FHNW zusammenarbeiten, welche den Neugründungen mit ihren Kompetenzen beratend zur Seite stehen wird. Somit wollen wir mit dem PARK innovAARE das Thema Entrepreneurship noch weiter ausbauen.

Dagegen fokussiert der Innovationspark in Basel auf Entrepreneurship?
Moeri:
Ja und nein. Wir möchten vor allem Projekte, die aus der Industrie kommen, zu Spinn-offs machen. Eine wichtige Komponente ist, Projekte in unserer Region zu behalten, die sonst abwandern, weil sie nicht - oder nicht mehr - in die Unternehmensstrategie der Grossunternehmen passen würden. Wenn etwa eine Produktentwicklung gestoppt wird, weil sich die Strategien der Grosskonzerne geändert haben, können wir mit der Vernetzungsfunktion des SIP NWCH das Projekt in einem neuen Set-up weiter treiben. Wir haben in der Region einige Firmen, die bewiesen haben, dass dies funktioniert. Paradebeispiele sind Actelion oder Rolic, die beide aus der Roche heraus entstanden sind. Der SIP NWCH soll diese Beispiele multiplizieren können.

Inwiefern ist auch eine Zusammenarbeit vorgesehen?
Moeri:
Im internationalen Vergleich ist die Grünfläche zwischen Basel und Zürich ein grösserer Park. Die Distanzen in der Schweiz sind nach globalem Massstab vernachlässigbar. Der Innovationspark Basel und der PARK innovAARE haben schriftlich festgehalten, dass wir zusammenarbeiten werden. Denn der PARK innovAARE hat klare Spezialgebiete und sollten wir Anfragen erhalten, die in den PARK innovAARE gehören, werden wir diese dahin weiterleiten. Auch umgekehrt wird es so sein, dass Projekte aus dem Life Sciences-Bereich zu uns kommen sollen.
Travaglini: Beide Standorte haben eine klare thematisch-inhaltliche Ausrichtung und sind hinsichtlich der Innovationsschwerpunkte wertvolle Ergänzungen füreinander, daher sind regelmässige Austausch-Gespräche vorgesehen. Wichtig ist jedoch auch, wie der Nationale Innovationspark im internationalen Wettbewerb von aussen als Ganzes wahrgenommen wird und bestehen kann. Es geht darum, eine möglichst komplette Palette von Forschungs- und Dienstleistungen, R&D Infrastruktur, Labors, Knowhow, IP und Fachkräften anzubieten. Daher ist es verwirrend für unsere Zielgruppe, von Basel, Aargau oder Zürich zu reden, denn im internationalen Kontext ist es das Gebiet zwischen «Zürich West» und «Basel Ost». Global agierende Unternehmen holen sich die Leistungen ohnehin dort ab, wo sie ihnen am besten angeboten werden. Insofern bin ich ein Anhänger davon, dass sich die einzelnen Standorte gezielt und komplementär auf ihre Stärken fokussieren.

Geht es auch darum, neue Unternehmen aus dem Ausland anzusiedeln oder soll die Schweiz eher von innen heraus wachsen?
Moeri:
Man sollte nicht nur versuchen, Firmen aus dem Ausland in die Schweiz zu bringen, sondern auch berücksichtigen, dass es innerhalb des bestehenden Ökosystems viele Firmen gibt, die ausgebaut werden können und dass in der Region viel Potential vorhanden ist. Firmen aus dem Ausland im Life-Sciences Cluster anzusiedeln unterstützen wir in Zusammenarbeit mit den bestehenden Organisationen natürlich.

Zwei Innovationsparks sind gesetzt: Einer in Lausanne und einer in Zürich. Nun ist der Run auf weitere Parks lanciert. Wo stehen da Aargau und Basel?
Moeri:
Wir haben ein fundiertes Dossier für die Bewerbung der Kantone BL, BS und JU eingegeben und sind zuversichtlich, dass wir ein Teil des Schweizer Innovationsparkes werden. Travaglini: Expertenmeinungen zufolge hat der PARK innovAARE mit seiner inhaltlichen und konzeptionellen Ausrichtung gute Chancen auf einen Netzwerkstandort. Wir freuen uns, dass die Medien diese Einschätzung teilen, zum Beispiel die NZZ in ihrer Ausgabe vom 28. März diesen Jahres.
Moeri: Nicht der Standort sollte für ausländische Interessenten im Mittelpunkt stehen, sondern das jeweilige Fachgebiet, das sich aus der regionalen Stärke ergibt. Unter dem Label Swiss Innovation Park bekommen die bereits existierenden Schwerpunkte in Forschung und Entwicklung ein Gesicht gegen aussen. Das finde ich hervorragend.

Es geht also darum, einen Brand zu schaffen, der eine ähnliche Wirkung entfaltet wie das Silicon Valley?
Travaglini:
Ja, mit dem Swiss Innovation Park kann sich die Schweiz ganz klar im europäischen und globalen Wettbewerb positionieren. Damit ergreift unser Land eine einmalige Chance. Aber man muss auch den Mut haben zur Fokussierung auf die eigenen Stärken. So gesehen ist das Silicon Valley als Label sicher ein Vorbild.

Wie geht es nun konkret weiter? Was sind die nächsten Meilensteine?
Travaglini:
Am 26. Juni wird die Volkswirtschafts-Direktoren-Konferenz über die Vergabe der Netzwerkstandorte entscheiden. In den nächsten Monaten liegt unser Fokus auf der Erarbeitung von Business Cases und Technologieplattformen für die Akquisition von international tätigen Unternehmen.
Moeri: Wir gehen in zwei Phasen vor. In der ersten Phase werden wir einen Initialstandort beziehen. Wir übernehmen dafür bestehende Labors der Actelion. Im nächsten Jahr wollen wir diese rund 3000 Quadratmeter beziehen und dann sehr schnell starten, ohne, dass wir etwas neu bauen müssen. Die Wahrscheinlichkeit ist sehr gross, dass wir dies auch umsetzen, sollten wir das Label nicht erhalten. Dafür haben wir in der Region jetzt schon zu viel bewegt, als dass der Zug jetzt noch aufzuhalten wäre.

Interview: Thomas Brenzikofer, Nadine Aregger

*André Moeri ist Projektleiter des «Schweizer Innovationspark Region Nordwestschweiz» (SIP NWCH). Er baute unter anderem die Firma Medgate mit auf, die mit 250 Mitarbeitenden im Bereich der Telemedizin und der medizinischen Grundversorgung tätig ist.

*Giorgio Travaglini arbeitet seit 2012 als Leiter Technologietransfer am Paul Scherrer Institut (PSI) in Villigen und ist mitverantwortlich für den PARK innovAARE im Kanton Aargau. Davor war er unter anderem als nationaler Ansprechpartner für europäische Forschungsprogramme am Head Office von Euresearch in Bern tätig.

report ICT

BC Platforms launches analytics tool

13.09.2017

report

BaseLaunch Accelerator gains another healthcare partner

08.09.2017

Cookies

BaselArea.swiss uses cookies to ensure you get the best service on our website.
By continuing to browse the site, you are agreeing to the use of cookies.

Ok