Innovation Report

 
report Production Technologies

Three entrepreneurs, three visions of Industry 4.0

05.11.2018

BaselArea.swiss invited startups and Industry 4.0 projects to participate in the first Industry 4.0 Challenge. A jury from the industry chose three finalists: Philippe Kapfer with NextDay.Vision, Roy Chikballapur with MachIQ and Dominik Trost with holo|one. Learn more about their contributions and visions in the interview. You can meet the entrepreneurs at the Salon Industries du Futur Mulhouse on 20 and 21 November 2018.

BaselArea.swiss: Which problem does your company aim to solve?

Dominik Trost, holo|one: In general, our solutions utilise Augmented Reality to quickly bring know-how to where it is needed. This translates to offering intuitive means of maintenance support, such as holographic checklists or reporting tools, as well as AR enhanced remote assistance for companies to provide electronic information to sites around the globe, alongside common audiovisual calls. We also use holograms and animations as storytelling tools, and are developing an app entirely dedicated to design and presentation purposes. Most of all, we believe in keeping things simple: Our apps concentrate on a core set of powerful features and can all be managed through our browser-based management portal. People should be able to use our apps with as little effort as possible.

Roy Chikballapur, MachIQ: We help machine builders and manufacturers to gain equipment and asset performance. To that end, MachIQ provides a software for machine builders to simplify customer support and to monitor their machines, hence reducing unplanned outages for their customers. For manufacturers, MachIQ created a software that helps with predictive support and that combines useful functions for plant managers, controllers and the maintenance team alike. In short: We bring machines to life.

Philippe Kapfer, NextDay.Vision: We simplify communication between machine manufacturers and their customers and makes them safer. Normally, connections between two contacts are insecure and vulnerable because one or even both sides have to open the connection. This makes them vulnerable. Also, you usually need to interrupt the workflow to validate a partner. Our API is designed to help companies create integrated software. For example, a company can update its machine remotely and integrate the validation workflow directly on the customer side. The customer just logs on to his smartphone. He does so by signing in by hand. Afterwards, the manufacturer can update the machine from a distance. This leads to a traceable and rule-compliant process.

When and why did you found your company?

Philippe Kapfer: NextDay.Vision has been around since mid-2017. Before that, I wrote a book on the security of computer systems as part of my master's thesis, showing how Windows can be hacked – corporate computer systems are easily attackable from the inside. For fear of such attacks, many companies do not use the cloud, for example, and try to keep their systems closed. In discussions with machine manufacturers and their customers, I realized that there is a lack of solutions for this. In the course of digitalization, the question naturally arises as to how we can make connections secure. My company provides answers to that question.

Roy Chikballapur: When I was with Schneider Electric in Paris, I helped to digitalize industrial offers for different companies. However, by talking to the machine builders and manufacturers I learned that they struggled with much more basic problems. One of these fundamental problems is customer support – it simply takes too much time to look up customer and serial numbers and to fix stuff. All the while, the machine is not producing anything and only generates losses for the respective company. I had the idea for my company in 2014, in 2016 I launched MachIQ.

Dominik Trost: It all began with the presentation of the Microsoft HoloLens: We saw the presentation live and knew that AR will be a big thing using head-mounted devices. Soon we got the first device and had lots of workshops with companies from different areas of business. We immediately realized the benefits of this technology and companies saw their AR use cases too. After assessing the market potential in Switzerland, we founded our company just at the end of that year, first concentrating on individual showcases. We soon realized that a standardized approach better satisfies corporate needs, but there was still a lot of work to do: This year, we almost exclusively worked on developing ‘sphere’, our new AR platform that will be released at the end of November.

How did you learn about the i4 Challenge and why did you apply?

Dominik Trost: Markus Ettin, industry 4.0 and automatization manager at Bell Food Group, suggested that we might be a good fit for the i4.0 Challenge and motivated us to look deeper into it. Though having an international outlook, we found it important to strengthen the regional awareness for our technology as well, so we took our chances…

Philippe Kapfer: For me, the Challenge was like another litmus test. I wanted to know how our solution was received. In the Industry 4.0 Challenge, I had the opportunity to have my project reconfirmed by industry experts. At the same time, the jury acknowledged that we were actually bringing something new to industry.

Roy Chikballapur: We were in touch with the BaselArea.swiss team thanks to their support in us relocating from the Canton of Vaud to Basel-Stadt. Sebastien Meunier, who was responsible for the initiative posted about the i4 Challenge on LinkedIn and this is how we found out about it. I believe that the discussions on BaselArea’s LinkedIn community are very relevant to what’s happening in the Industry 4.0 sector and this is what motivated us to apply.

What does the term “Industry 4.0” mean to you and why do you consider the topic significant?

Dominik Trost: To us, industry 4.0 is the logical evolution of industry with the tools and technologies that are available or being developed. Like the ‘4.0’ epithet already suggests, we think that it is the industrial revolution of our generation, adding immense amounts of productivity, safety, and interconnectivity. It is therefore obvious to us that industry 4.0 will remain the hot topic over the following decade, and now is the ideal time to get on board.

Philippe Kapfer: I believe that "Industry 4.0" is often used to sell a new product or service. Often the technology was there before and is merely used differently under the title Industry 4.0. For me, that label first and foremost means that the industry is evolving.

Roy Chikballapur: I think there is more to the phrase. I agree that a lot of focus today seems to be on the technologies that enable the digitalization of processes, the generation of useful data and the algorithms that many expect will replace human beings in several functions on the shop floor. At Machiq however, we focus on the business model transformations that these technologies will bring about when they are deployed at scale and we find few companies are preparing themselves for this.

Here is an example: Most machine builders consider the sale of spare parts and the delivery of maintenance and repair services as their “Services Business”. However, their customers are actually buying the experience of zero unplanned outages. With the improved ability to connect machines and to analyze performance data in real time, outages can now be prevented.
However, in doing so, machine builders will likely reduce their spare parts revenue. Are they ready for this? Not as long as they stick to current business models. But what if they offered a “Netflix of spare parts and services”-contract where the customer instead buys uptime.

What if a yoghurt producer could pay his equipment supplier based on the number of pots of yoghurt produced per month? This would force a shift from a capital expenditure-heavy model to an operational expenditure-based model, even in the machinery industry. The Industry 4.0 model will force suppliers to collaborate with customers and competitors to collaborate with peers. It is our task to accompany all parties to take this transformative journey in a step-by-step manner that does not disrupt the current business models unnecessarily.

Where do you see the development in the region?

Roy Chikballapur: We settled in Basel primarily because of its location at the heart of the machine building industry in Europe. In a 300 km radius we have the largest concentration of leading machine building companies in every important industry. What was also a key attraction was the Canton's focus on Industry 4.0. While there are many startup hubs across Europe, they tend to focus on more “sexy” topics like Fintech, Blockchain and AI. Personally, I hope that the region instead takes up something that is more concrete and “real” as its focus area, capitalizing on its strength as a life sciences hub but also as a center of industry and logistics. We would like to see more collaboration among Industry 4.0 startups to integrate each of our products to develop more comprehensive offers for our customer base. We would also like to increase our collaboration with larger industrial companies in the region. I am certain that such a focus on the i4 theme will accelerate innovation and position Basel as a hub for Industry 4.0.

Dominik Trost: As a software company with a standardized product, our outlook is not as much regional, but rather national or defined by language barriers. Looking at the state of AR in Switzerland and Germany, there are indeed more pockets of development here than in other places, mostly in the form of individual startups and university programs. However, AR is still generally viewed as an experimental technology, despite applications being proven viable and beneficial. There is nowhere near as much drive and competition as in the US or East Asia – both a chance and a ticking clock for us.

What are your plans for your company?

Philippe Kapfer: We currently have customers mainly in the Jura and in the French-speaking parts of Switzerland. In addition to our products, I also offer training and audits on information security systems. In the future, I want to put even more capacity into development. We are targeting both the national and international markets with our security software and API. The cybersecurity market is growing by ten percent annually, but not enough people can respond to this development. NextDay.Vision provides the software that satisfies a need and makes it easier for companies to meet high security standards. We want to anchor cybersecurity in the mindset of the industry. This includes enabling connections between customers and manufacturers without sacrificing data security. We are confident that we will continue to grow with our product and vision.

Dominik Trost: At this point, almost anything is possible. We are actively building up our network of distributors and are also looking across the borders, already promoting our solutions in Germany and exploring our options in other countries. It is very likely for foreign competition to enter the European market, which makes it important for us to act quickly and decisively. We have, however, built a competent team and are very confident in the quality our products, so we are looking forward to what the future holds.

Roy Chikballapur: MachIQ has positioned itself as a neutral, brand agnostic player offering software products that connect machine builders and their industrial end-user customers for asset performance management. Machiq’s software creates the dynamics of a “data cooperative” for Industry 4.0. Common data benefits everyone on the system, but is managed securely so that it does not compromise the relationships that companies have built with their suppliers and customers or the competitive dynamics between business peers. Our vision is to become the “Business Operating System” of the Industry 4.0-enabled world. While many companies aren’t thinking about it, the moment we present our vision to them, they immediately get us and they get what we are trying to do. We are experiencing strong growth in our customer base. Consequentially, we are focusing on hiring the right talent and growing the team fast enough right now.

Text: Annett Altvater

report Production Technologies

La passion, l’ingéniosité et le plaisir d’aller au travail font partie des valeurs d’entre...

05.11.2018

report Production Technologies

Swiss Industry 4.0 Conference

04.09.2018

report Production Technologies

"I Was Always One of Few Women in the Industry"

27.09.2018

SOLO Swiss in Porrentruy in the canton of Jura has been making industrial furnaces for heat-treating metals since 1924. The family company with a global presence is developing against the backdrop of Industry 4.0 and is struggling to find the qualified workforce which is indispensable for what it does amid the effects of the strong franc and what are sometimes restrictive administrative regulations. Interview with Anne-Sophie Spérison, President and CEO.

BaselArea.swiss: I imagine that Industry 4.0 is a key area of development for you?

Anne-Sophie Spérisen: Absolutely. Industry 4.0 is understood as the collection of all the data available on a machine to convert them into information or “impetus” for other factors included in the ERP (Enterprise Resource Planning) system, for example. It is also about loading and downloading information on preventive or corrective maintenance for a machine. In practice, alerts are triggered if a turbine is gradually approaching the end of its run. This can also be management data which is sent to the control cockpit.

Is there major potential in terms of Industry 4.0 in your company? 

Yes. On our kinds of machines, all the information on each of them could potentially be sent further down the line. Industry 4.0 could also be very useful for maintenance. For example, it would be conceivable to provide our customers with connected glasses so that our technicians could provide instructions from Switzerland while the customer sits in front of their machine in Shanghai, so they can fix the machine themselves. Our objective is to ensure that Industry 4.0 is a real bonus not only for the customer, but also for production, maintenance, monitoring, machine productivity and the management cockpit.

There is sometimes a tendency to bundle everything in with Industry 4.0. But what is it really all about?

It is the extraction and processing of data in a previously unprecedented manner. In Industry 4.0, we are attempting to link new technologies and new processes with exactly this Industry 4.0. At the end of the day, it is almost a question of creating new products and services. That is why we have had an engineer dedicated to this project for two years now, although he is not the only one dealing with it. He needs to have a perfect command of information systems, data processing and emerging technologies (receivers, sensors) – as well as the associated possibilities these offer, since they are evolving all the time. 

What about maintenance?

For us, this is a key issue. In this area, we offer our customers private Internet portals. They can connect remotely from their machines and monitor their production online. We can install sensors all over the machines. They generate relevant information which can then be retransmitted in a form which is coherent, intelligent and comprehensible to the customer as a function of their requirements. Effectively, we need to make all the information available to the customer in the form they want it. For example, a complete log of all maintenance on their furnace.

Still on the subject of Industry 4.0, are you able to find the necessary skills in Jura?

It is not easy. There is a lack of schools providing training. We are primarily looking for IT specialists, specifically specialists in Industry 4.0, but they also need to understand the technology. We need both IT experts and mechanical and electrical engineers. The region here is a centre for micro-technology, which does not tie in with our area of activity.

The future of SOLO lies in…

...perfect mastery of the furnace process, i.e. everything that happens inside the furnace and controls the machine. The customer demands pieces which are perfect after treatment with no reprocessing necessary and a guarantee that they will meet the ever more demanding quality standards of the automotive (CQi9) or aerospace (AMS 2750) industries. The complexity of the parts to be processed, new alloys, new production techniques for metal parts (3D printing), this is our future. It is all about having perfect control of the thermo-chemical processes of our machines. Essentially, it is metallurgy which is controlled by computers.

Will you be able to continue production in Switzerland?

It is a challenge, because we only sell 20% of our machines in Switzerland and we export the rest all over the world because our machines are aimed at niche industries. Added to this is the issue of the strong franc and the problems in finding qualified engineers in Jura, especially as the employment market is so robust. It is a real challenge for us. There is also the difficulty posed by the myriad of standards and regulations, which are coming increasingly complex and onerous at an administrative level. At the same time, however, it is an opportunity for us, as it protects us from competition from low-cost countries who cannot comply with the new and increasingly demanding standards. But remaining competitive at a pricing level is very difficult. That said, the new technologies fortunately give us an opportunity to improve our competitiveness even further.

Are you optimistic?

Yes, I am by nature, even when it’s a daily battle. There are so many parameters which can change very quickly. Luckily, the markets are currently stable, we are seeing good levels of growth from the majority of markets in Europe, Russia and Asia, and we have a range of quality products which are tailored to our niche markets. We also have a fantastic team we can rely on and have some new technical developments in the pipeline. 

What can you say about the Chinese market?

When we started back in the 70s and 80s, we sold furnaces to Chinese purchasing centres. And we also worked with representatives over there. In the 2000s, we entered into a partnership with a local company. Currently, we are working with a production unit in Canton with around one hundred employees. It is a company run by a family who have become our friends. It was necessary, even critical to produce locally for the Chinese market, especially in order to respond to invitations to tender from government companies.

How would you describe the effect of having a woman in charge of the company?

It does not pose any problems personally. I am very much at ease with it. Some people I speak to are put off-balance because a woman is perhaps more direct than a man. We dare to ask questions, we are more stubborn. I grew up being the only girl or one of the few women: there are very few in industry, which I think is regrettable. There are no differences in management styles between men and women. It is more a question of character and sensitivity.

www.solo.swiss

Interview: Didier Walzer

report Micro, Nano & Materials

L'impression 3D en précision

03.09.2018

report Production Technologies

3D printing: rapidly developing technology in life sciences

14.08.2018

report Life Sciences

“The Basel region should not simply be part of the transformation, but should be helping t...

07.12.2016

Dr Falko Schlottig is Director of the School of Life Sciences at the University of Applied Sciences and Arts, Northwest Switzerland (FHNW), in Muttenz. He advises start-up companies in the life sciences and has founded start-ups himself.

In our interview, he explains how the School of Life Sciences would like to develop, why close interdisciplinary collaboration is so important and what future he foresees for the health system.

You come from industry and have also been engaged in start-ups yourself. Is it not atypical now to work in the academic field?
Falko Schlottig*:
If it were atypical, we would be doing something wrong as a university of applied sciences. Many of the staff at the FHNW come from industry. That’s important, because otherwise we could not provide an education that qualifies students for their profession and because through this network we can drive applied research and development forwards. With our knowledge and know-how we can make a significant contribution to product developments and innovation processes.

Is this how the FHNW differs from the basic research done at universities?
It’s not about making political distinctions, but about a technical differentiation. As a university of applied sciences, we are focused on technology, development and products. The focus of universities and the ETH lies in the field of basic research. Together this results in a unique value chain that goes beyond the life sciences cluster of Northwest Switzerland. This requires good collaboration. At the level of our lecturers and researchers, this collaboration works outstandingly well, for example through the sharing of lectures and numerous joint projects. On the other hand, there is still a lot of potential in the collaboration to strengthen the life sciences cluster further, for instance in technology-oriented education or in the field of personalized health.

Does “potential” mean recognition? Or is it a question of funding?
Neither nor! The distinction between applied research and basic research must not become blurred – also from the students’ perspective. A human resources manager has to know whether the applicant has had a practice-oriented education or first has to go through a trainee programme. It’s a question of working purposefully together in technology-driven fields even better than we do today in the interest of our region.

Are there enough students? It’s often said there are too few scientists?
Our student numbers are slightly increasing at the moment, but we would like to see some more growth. But the primary focus is on the quality of education and not on the quantity. What is important for our students is that they continue to have excellent chances on the jobs market. Like all institutions, however, we are feeling the current lack of interest in the natural sciences. For this reason, we at the FHNW are committed in all areas of education to subjects in the fields of science, technology, engineering and mathematics - or STEM subjects.

You have now been head of the School of Life Sciences at the FHNW for just over a year. What plans do you have?
We want to remain an indispensable part of the life sciences cluster of Northwest Switzerland. We also want to continue providing a quality of education which ensures that 98 percent of our students can find a job after graduation. In concrete terms, this means that we keep developing our teaching in terms of content, didactics and structure and follow the developments of the industrial environment and of individualization with due sense of proportion. In this respect, we’ve managed to attract people with experience in the strategic management of companies in the industrial field and people from institutions in the healthcare and environment sectors to assist us on our advisory board.
In research, we will organize ourselves around technologies based on our disciplinary strengths and expertise in the future and will be even more interdisciplinary in our work. We will be helped by the fact that we are moving to a new building in the autumn of 2018 and will have one location instead of two. In terms of content, we will establish the subject of “digital transformation” as an interdisciplinary field in teaching and research with much greater emphasis than is the case today. Finally, we should not simply be part of this transformation, but should be helping to shape it.

Apropos “digital transformation”, IT will also become increasingly important for natural sciences. Will the FHNW train more computer scientists?
Here at the School of Life Sciences we are successfully focused on medical informatics; the FHNW is training computer scientists in Brugg and business IT specialists in Basel. But we also have to ask ourselves what a chemist who has attended the School of Life Sciences at the FHNW should also offer in the way of advanced IT know-how in future – for example in data sciences. The same applies to our bioanalytics specialists, pharmaceutical technology specialists and process and environmental engineers. Nevertheless, natural science must remain the basis, enriched with a clear understanding of data and related processes. Conversely, an IT specialist who studies with us at the School of Life Sciences also has to come to grips with natural science issues. This knowledge is essential if you want to find a life sciences job in the region.

Throughout Switzerland – but also especially in the Basel region – there is a lot of know-how in bioinformatics. But from the outside, the region is not perceived as an IT centre. Should something not be done to counteract this perception?
We do indeed have some catching up to do in the life sciences cluster of Northwest Switzerland. The important questions are what priorities to focus on and how to link them up. Is it data mining – which is important for the University of Basel and the University Hospital? Or is it the linking of patient data with the widest variety of databases in order to raise cost-effectiveness in hospitals, for example? Or does the future lie in data sciences and data visualization to simplify and support planning and decision-making, which is one of the things we are already doing at the School of Life Sciences? The key issue is to know what data will serve as the basis of future decision-making in healthcare. Here it is also a question of who the data belongs to and both how and by whom the data may be used. This is one of the prerequisites for new business models. Since we are engaged in applied research, these issues are just as important for us as they are for industry. This hugely exciting discussion will remain with us for some years to come.

The School of Life Sciences at the FHNW covers widely differing areas such as chemistry, environmental technology, nanoscience and data visualization – how does it all fit together?
It is only at first glance that these areas seem so different – their basis is always natural science, often in conjunction with engineering science. The combining of our disciplines will be even better when they are all brought together in 2018, at the very latest. You can see it already, for example, in environmental technology: at first glance, you wonder what it has to do with bioanalytics, nanoscience or computer science. But the School of Life Sciences is strong in the field of water analysis and bioanalytics, and one of the biggest problems at the moment is antibiotic resistance. To find solutions here, you need a knowledge of chemistry, biology, analytics, computer science and also process engineering know-how. As from 2018/19 we will have a unique process and technology centre in the new building, where we will be able to visualize all the process chains driving the life sciences industry today and in the future – from chemistry, through pharmaceutical technology and environmental technology to biotechnology, including analytics and automation.

You’ve been - and still are - involved in start-ups. Will spin-offs from the School of Life sciences be encouraged in future?
We are basically not doing badly today when you compare the number of students and staff with the number of start-ups. But we do like to encourage young spin-off companies; at our school, start-ups tend to spring from the ideas of our teaching staff. Our Bachelor students have hardly any time to devote themselves to starting up a company. On the other hand, entrepreneurial thinking and engagement form part of the education provided at the School of Life Sciences. After all, our students should also develop an understanding of the way a company works. A second aspect is entrepreneurial thinking in relation to founding a company. The founding of a start-up calls for flexibility and openness on our part: How do we deal with a patent application? Who does it belong to? How are royalties arranged? Our staff have the freedom to develop their own projects. Our task is to define the necessary framework conditions. We already offer the possibility today of a start-up remaining on our premises and continuing to use these facilities. We have reserved extra space for this in the new building. We also make use of all the opportunities that the life sciences cluster of Northwest Switzerland offers today. This includes, for example, the life sciences start-up agency EVA, the incubator, Swiss Biotech, Swissbiolabs, the Switzerland Innovation Park Basel Area, BaselArea.swiss and also venture capitalists, to name just a few. We are well-networked, and here too we are doing what we can to help foster the development of our region

Why do you think it is apparently so difficult in Switzerland to establish a successful start-up?
There are two factors in Northwest Switzerland that play a part: a very successful medium-sized and large life sciences industry means the hurdles to becoming independent are much higher. When you found a start-up, you give up a secure, well-paid job and expose yourself to the possible financial risks associated with the start-up. The second big hurdle is funding, especially overcoming the so-called Valley of Death. Compared with the second step, it is easy to obtain seed capital. Persevering all the way to market with a capital requirement of between one and five million francs is very difficult.

That should change with the future fund.
It would of course be fantastic if there were a future fund of this kind to provide finance of between one and two million francs. This would finance start-up projects for two or three years. In this respect, it is incredibly exciting, challenging and moving to see the whole value chain from research to product in use, to be familiar with networks and to be involved. Today this is almost only possible with a start-up or a small company. But in the end, every potential founder has to decide whether he or she would prefer to be a wheel or a cog in a wheel.

Will the healthcare sector look dramatically different in five or ten years?
Forecasts are always difficult and often wrong. The big players will probably wait and see how the market develops. The healthcare sector may well look different in five to ten years, but not disruptively different. We will see new business models, and insurers will try exploring new avenues. This may lead to shifts. At the moment we are experiencing the shift from patient to consumer. On the product side, the sector is extremely regulated, so it is not easy to launch a new and innovative product onto the market. In my view, many regulations inhibit innovation and do not always lead to greater safety for the patients, which is actually what they should do.

How could this transformation be kick-started?
I believe that we at the University of Applied Sciences in Northwest Switzerland have a major contribution to make here. For example, we take an interdisciplinary and inter-university approach collaborating on socio-economic issues based on our disciplinary expertise within strategic initiatives. In this way we are trying to our part to help find solutions or answers. Switzerland and our region in particular have huge potential in this pool of collaboration. This now needs to be exploited.

Interview: Thomas Brenzikofer and Nadine Nikulski, BaselArea.swiss

*Prof. Dr. Falko Schlottig is Director of the School of Life Sciences at the University of Applied Sciences and Arts Northwestern Switzerland (FHNW) in Muttenz. He has many years of experience in research and product development and has held a variety of management positions in leading international medical device companies. Falko Schlottig has also co-founded a start-up company in the biotechnology and medical devices sector.

He studied Chemistry and Analytical Chemistry. He holds an Executive MBA from the University of St Gallen.

 

report Production Technologies

So bringt uns die Technologie 4.0 weiter

06.08.2018

report Production Technologies

L’impression 3D, des technologies en plein développement dans les sciences de la vie

18.07.2018

report Production Technologies

“I find it motivating to succeed together with others”

02.11.2016

Patrick Vergult is managing director of Actemium Switzerland Ltd, a provider of networked industrial and building automation with headquarters in Basel and five other sites in Switzerland.

In our interview, the native of Belgium explains what brought him to Switzerland, what objectives Actemium is pursuing and why he believes that, while Industry 4.0 will result in a revolution, we will only see an evolution in terms of the technology.

Your story sounds fascinating: you are Belgian, came to Switzerland in 1991 to work for Cern and are now the CEO of Actemium Switzerland – how did that come about?
Patrick Vergult*: In 1991 I arrived at Cern in Geneva as a freelance software engineer commissioned by ABB. At Cern I programmed cryogenic systems that could be cooled to minus 269 degrees Celsius. These systems are used to cool the magnets in the long ring of the particle accelerator until they reach the superconducting state. These magnets, which are as big as 10-storey building, detect the particles that arise when accelerated positrons and electrons collide. Actually my plan was to return to Belgium after six months, but then I stayed in Switzerland and have steadily extended my network. At that time, I was also co-founder of a company in Belgium called Iproco. The business was going very well here in Switzerland and so in 1998 we decided to establish a branch of Iproco in Switzerland. In 2001 this gave rise to Else Automation. Actemium came into being in 2013 as a result of the merger of Etavis Engineering, Controlmatic and our company, Else Automation.

What exactly does Actemium Switzerland do?
Actemium is basically a product-neutral automation company. We do not develop any products of our own, but integrate various automation and IT systems for our customers. In short, with our six business units we offer electrical, automation and IT technology for networked industrial and building automation, as well as overarching production management. Our objective is to remain with the customer from consultation, planning and implementation of a project right through to maintenance of the systems. After all, we have a strong connection with the products that we use and are very familiar with our customers’ processes.

What excites you about working for Actemium?
I find it motivating to create something together with other people and to be successful together. Actemium enables people like me, who have a very entrepreneurial spirit, to remain entrepreneurs, even though we belong to the large VINCI Group. Actemium is a network with a decentralized management structure. That means that, in this large entity, there are various small organizations – so-called business units – that operate as autonomous and agile players on the market. All our BUs are highly segmented, so that there is no competition between them.

Why was it decided to opt for Basel as headquarters?
The companies from which Actemium Switzerland emerged in 2013 already had a presence in the region. So in 2013 everything ultimately came together in Basel-Stadt. Originally we were competitors, if anything, which meant that our business units had to be well segmented. For us the pharmaceutical and chemical industries were and are hugely important. The pharmaceutical industry in particular invests a lot, Switzerland is an attractive hub and, above all, the Basel region has a very stable market.

Is it not difficult to prevail against the competition in the pharma hub of Basel?
Our competitors of course have a similar strategy. We try to stand out through other factors: The Actemium University offers training for customers and staff, and we also cultivate an internal network of talents for staff under 30 years of age known as Young at Actemium. Our young employees give presentations on the company from their own perspective at graduate fairs or universities – without the presence of a member of management. Trust is very important to us. This year we also introduced a Talent Award, for which theses can be submitted once a year by technicians and engineers. This annual prize will be awarded by us and external jurors from our customer base – for example from Roche, Novartis or Endress+Hauser. The aim of this award is to foster greater contact with universities and develop our own talents more. As part of this effort, we also train 20 apprentices every year and offer dual education studies for five or six students.

Is the strength of the franc a problem for Actemium?
We are fortunately heavily engaged in the pharmaceutical sector, where the strong franc only plays a minor role. Many pharmaceutical companies also export in dollars, a currency that has appreciated in value – which has offset the weakness of the euro to some extent. In fact, despite everything, we have steadily grown more than 10 percent in the last few years.

Aside from Switzerland, Actemium also has sites in Alsace and in Southern Germany – does this lead a trinational exchange?
It’s very important to us that our regional network is cultivated. The advantages of this to our customers and employees, however, depends heavily on their own personality. Some make intensive use of the opportunities, while others are perhaps a little more introverted and do not set as much store by networking. Beyond the three-countries corner, Actemium has business units in a further 35 countries. We are thus ideally positioned to service our customers; there are international working groups that share ideas and information on various issues. Recently, for example, a meeting took place in Paris on the topic of Industry 4.0. In the Basel region, we have established a three-countries corner network that meets three times a year to pool their strengths. We have already seen the first successes: a project in French-speaking Switzerland, for example, could only be tackled in the first place thanks to the pooling of knowledge by mechatronic experts from France and automation experts from Switzerland. This offers our customers huge added value of course, because they get everything from a single source. Actemium in Switzerland goes a step further: we have developed our own CV database, in which each of our 215 employees has posted his or her CV and expertise. The information is updated once a year at the performance appraisal interview with employees. In this way we can easily search for experts internally – regardless of whether we are looking for language skills or other expertise. And in fact we usually also find the skills we are looking for. Not the global Actemium network is expressing a strong interest in this solution. Digitalization continues its advance, and everyone is talking Industry 4.0.

How will this impact the work of Actemium?
We notice how the subject of Industry 4.0 tends to confuse our customers, because most of them don’t know exactly what it means. Industry 4.0 is not a ready-made solution that you can take out of a drawer – it differs from one customer to another. For this reason we will usually first get customers to explain what Industry 4.0 means for them – and then explain what we understand by it. In this way, we arrive at a shared understanding and a good starting point for successful projects. It’s not only about networking objects and gathering data in the Cloud – that’s just the beginning! When the data is in the Cloud, it requires smart conversion for the customer in order, for example, to improve the value chain. Industry 4.0 per se is not a revolution: technologies are used that have already been around for years. But it will lead to a revolution.

So it will take some time yet?
I believe so, because a lot of customers don’t yet seem ready to completely embrace the subject. Take a meat producer that organized a workshop on Industry 4.0, for example. The talk there was almost exclusively about SAP. The fact that the weather, for example, can influence people’s meat consumption and the production of meat could be rescheduled early on as a result did not register. In the future, visionaries who can show customers business opportunities in the area of Industry 4.0 will be in demand – I see great potential here. The strengths of the systems and technologies used have also not yet been exploited to the full by any means. There is still a lot of upward scope in the next 20 years.

What other trends do you see besides Industry 4.0?
We set great store by robotics, manufacturing execution systems and energy efficiency. As regards the latter in particular it is still early days. Our customers have so far had little incentive to invest in energy efficiency – this will probably not come about until there are legal requirements in place. I firmly believe that you always have to step outside your comfort zone, reinvent yourself and adapt in order to survive in the future. And I try to apply this philosophy at Actemium – so that the staff and thus also the company do not remain seated in their comfort zone for too long.

What do you expect from BaselArea.swiss and what would you like to see from the promotion of a region and innovation?
I think it’s great that there are neutral platforms like BaselArea.swiss. For when companies organize such events themselves, then it always happens for reasons of a concrete benefit that the company expects to derive from it. So neutral platforms are an advantage because they can also link up different networks.

What does Actemium want to achieve?
The basic values of the Actemium network place the focus on people. We invest an annual three to five percent of the payroll sum in further training for our employees. We cultivate the network and generate our own talent through the training of apprentices and the dual education system. But of course we also want to grow further – in order to establish a nationwide presence in the longer term. To make sure we remain sustainable, each business unit should occupy an innovative and future-oriented business area aside from its core expertise. But regardless of whether we are talking about employees, customers or shareholders, everyone should be happy. And we try to achieve this through healthy, stable and profitable growth.

And if you could wish for something for your company?
Then I would wish that we become the best automation company and the best employer in the field of automation nationwide. And we are well on track. If we achieve that, we can achieve anything – and we enjoy working hard on this every day.

Interview: Sébastien Meunier and Nadine Nikulski, BaselArea.swiss

*Patrick Vergult is the CEO of Actemium Switzerland Ltd., a company that offers solutions and engineering services in the field of industrial and building automation. Actemium sees its mission as helping its industrial customers to modernize their factories and buildings and increase their profitability.

In 2001, Patrick Vergult was co-founder and major shareholder of ELSE Automation Ltd. The company joined the VINCI Group in May 2011 and became part of the Actemium network of VINCI in 2013. In addition, he founded curaVer Business Support, a company that provides consulting and support services mainly to foreign companies settling up business in Switzerland. He was also successfully involved in the restructuring of travel company Venture Europe, where he underwrote the financial risk.

Discover Actemium Switzerland

report Production Technologies

So bringt uns die Technologie 4.0 weiter

17.07.2018

report Production Technologies

Le Salon Be 4.0 à Mulhouse réunit les industriels européens

03.07.2018

report Production Technologies

Production Technologies – der neue Bereich von BaselArea.swiss

02.11.2016

Derzeit reicht es nicht aus, einfach zu produzieren. Unternehmen müssen zu geringeren Kosten produzieren, sparsam mit Ressourcen umgehen, die Wünsche der Kunden berücksichtigen – alles in kürzester Zeit und möglichst ohne Lagerbestand. Neue Produktionstechnologien versprechen Lösungen. Additive Fertigung, Robotik oder Internet of Things: Die Produktion von Gütern wird sich in den nächsten Jahren stark verändern.

Neu bearbeitet BaselArea.swiss den Fachbereich „Production Technologies“. Die Region Basel ist gekennzeichnet durch die Präsenz von High-Tech-Unternehmen, die komplexe, qualitativ hochwertige Produkte zu hohen Lohnkosten herstellen. Die Lage Basels an der Grenze zum Elsass und zu Baden bietet ihnen eine echte Chance für den Austausch und die Zusammenarbeit zur Verbesserung der Wettbewerbsfähigkeit sowie zur Entwicklung neuer Geschäftsmodelle.

Im Zentrum des Technologiefelds Production Technologies steht der sorgfältige Umgang mit Ressourcen und der Einsatz von sauberen Technologien. Der Fokus liegt dabei auf den folgenden 6 Bereichen:

  • 3D-Druck, additive Fertigung: BaselArea.swiss organisiert Informations- und Networking-Veranstaltungen sowie Workshops zu diesem Thema und den neuen Geschäftsmodellen. Darüber hinaus existiert eine LinkedIn-Gruppe mit rund 100 Forschern und Themenbegeisterten. 
     
  • Industrie 4.0: In Zusammenarbeit mit Schulen und Forschungszentren bietet BaselArea.swiss Informationsveranstaltungen und technologieorientierte Networking-Veranstaltungen auf regionaler und internationaler Ebene. Darüber hinaus bringt der Technology Circle „Industrie 4.0“ Unternehmen zusammen, um sich zu informieren und das Know-how in der Region weiter zu entwickeln.
     
  • Organische und gedruckte Elektronik: Die druckfähige Elektronik hat das Auftauchen neuer Produkte ermöglicht, beispielsweise OPV, OLED oder Anwendungen in den Bereichen Gesundheit oder Sensoren. BaselArea.swiss initiiert die Zusammenarbeit zwischen Unternehmen und Forschungszentren bei technischen Projekten sowie im Vertrieb und entwickelt zusammen mit der Industrie ein Netzwerk von Kompetenzen im Rahmen des Technology Circles „Printed Electronics“.
     
  • Effizienz bei der Nutzung von Ressourcen und Energie in der Produktion: Im Rahmen eines Technolgy Circles hat BaselArea.swiss ein Netzwerk von Unternehmern aufgebaut, das diesen regelmässigen Austausch pflegt.
     
  • Wassertechnologien: Die effiziente Nutzung von Ressourcen steht im Mittelpunkt. Die Forschung konzentriert sich auf Problemstellungen wie Mikroverunreinigungen, die Rückgewinnung von Phosphor oder auch die im Wasser vorhandenen antibiotikaresistenten Gene. Einmal pro Jahr veranstaltet BaselArea.swiss eine Veranstaltung in Zusammenarbeit mit der Hochschule für Life Sciences der Fachhochschule Nordwestschweiz (FHNW).
     
  • Biotechnologien für die Umwelt: Die Nutzung von lebenden Organismen in industriellen Prozessen ist nicht neu, gewinnt aber an Bedeutung, zum Beispiel bei der Behandlung von Ölunfällen. Dank Biokunststoffen aus erneuerbaren Rohstoffen (wie Lignin) bieten ökologischere Lösungen echte Alternativen zu den herkömmlichen chemischen Prozessen. BaselArea.swiss organisiert regelmässig Veranstaltungen zu diesem Thema und schafft Verbindungen zwischen Forschern, Industrie und Verwaltung.

Die gemeinsame LinkedIn-Gruppe „Production Technologies by BaselArea.swiss“ zählt heute bereits 46 Mitglieder, die sich gegenseitig über die neuesten Entwicklungen in den oben genannten Gebieten austauschen. Die Gruppe ist offen für neue Teilnehmer – melden Sie sich an!

Wenn Sie Interesse am Austausch mit Unternehmern und Forschern zum Thema „Production Technologies“ haben oder weitere Informationen über unsere Services wünschen, dann kontaktieren Sie einfach Sébastien Meunier (siehe Kontaktdaten links).

report Production Technologies

Willemin-Macodel porte l’innovation dans son ADN

07.05.2018

report Production Technologies

Are you ready for the i4Challenge?

07.05.2018

report Production Technologies

Keime und Antibiotikaresistenzen – ein Eventthema, das uns alle betrifft

05.10.2016

Bereits zum siebten Mal findet am 25. Oktober 2016 der eintägige Event aus der Reihe der Wassertechnologie statt, den BaselArea.swiss gemeinsam mit der Hochschule für Life Sciences der Fachhochschule Nordwestschweiz (HLS FHNW) organisiert. Am diesjährigen Event dreht sich im „Gare du Nord“ in Basel alles um „Keime, Antibiotikaresistenz und Desinfektion in Wassersystemen“.

Die Teilnehmer erleben Vorträge und Diskussionen, Institutionen können sich in der Fachausstellung mit Postern zeigen und so zu vertieften Diskussionen anregen. Ein Schlüssel für den langjährigen Erfolg der Veranstaltungsreihe ist die Kooperation der beiden Partner. Thomas Wintgens vom Institut für Ecopreneurship der HLS FHNW betont: „Uns ist die Zusammenarbeit mit BaselArea.swiss sehr wichtig, weil die Organisation ein regional stark vernetzter Akteur im Bereich von Innovationsthemen ist.“

Man habe eine gute Symbiose zwischen spezifischen, fachlichen Kompetenzen und dem Wissen über Themen und Akteure gefunden. „Auch in diesem Jahr ist es uns wieder gelungen, ein komplett neues Thema aufzunehmen“, sagt er. Die Forschungsaktivitäten der Gruppe um Philippe Corvini von der Hochschule für Life Sciences FHNW gaben den ersten Impuls zur diesjährigen Themenwahl.

Philippe Corvini, warum ist das Thema „Keime, Antibiotikaresistenz und Desinfektion in Wassersystemen“ spannend für eine grosse Veranstaltung?
Philippe Corvini: Das Thema ist in den letzten Jahren stärker in den Bereich der Umweltforschung vorgedrungen, immer mehr Arbeitsgruppen beschäftigen sich mit dem Verhalten und Vorkommen von Antibiotikaresistenzen in der Umwelt. Zudem haben auch auf nationaler Ebene die Aktivitäten zugenommen, es gibt ein nationales Forschungsprogramm und eine nationale Strategie zum Umgang mit Antibiotikaresistenzen. In den nächsten Jahren wollen wir intensiver untersuchen, wie sich diese Resistenzen zum Beispiel in biologischen Kläranlagen verhalten und welche Faktoren die Weitergabe von genetischen Informationen, die zu Antibiotikaresistenzen führen, beeinflussen.

Welche neuen Erkenntnisse erwarten die Besucher?
Philippe Corvini:
Wir werden am Event die neuesten Ergebnisse unserer Forschung vorstellen. Bisher wurde eine Resistenz relativ simpel erklärt: In der Umwelt existiert ein Antibiotikum, wodurch sich Resistenz-Gene bilden. Diese werden übertragen, die Resistenz verbreitet sich. Wir haben nun entdeckt, dass resistente Bakterien ein Genom besitzen, das sich weiterentwickelt, so dass sie sich am Ende sogar von Antibiotika ernähren können. Diese resistenten Bakterien bauen also die Antibiotika-Konzentration ab, so dass Bakterien, die sonst empfindlich auf den Wirkstoff reagiert haben, nun im Medium überleben und sogar ihrerseits eine Resistenz entwickeln können. Wir hoffen, künftig die Ausbreitung der Resistenzen bremsen zu können.

Wie könnte man dies schaffen?
Thomas Wintgens:
Wir werden demnächst im Pilotmasstab verschiedene Betriebsweisen von biologischen Kläranlagen untersuchen, um herauszufinden, wie diese Verbreitungswege durch Betriebseinstellungen in den Anlagen beeinflusst werden können. Ausserdem forschen wir an Filtern, welche die antibiotikaresistenten Keime zurückhalten und so die Keimzahl stark reduzieren können.

Warum ist die diesjährige Veranstaltung auch für Laien interessant?
Philippe Corvini:
Ich glaube, fast jeder hat eine Meinung zum Thema Antibiotikaresistenz und viele Leute haben eine Ahnung, wie dringend das Thema ist. Schliesslich betrifft das Thema Gesundheit uns alle.

Ein Fachevent – auch für Laien
Laut Thomas Wintgens dürfen die Teilnehmer viele kompetente Redner erwarten: „Wir freuen uns zudem sehr, dass Helmut Brügmann von der Eawag die nationale Strategie und deren Bedeutung für den Umweltbereich vorstellen wird.“

Generell berührt das Thema Wasser uns alle, weil es unser wichtigstes Lebensmittel ist. Wir konsumieren es als Trinkwasser, über Nahrungsmittel oder nutzen es für unsere persönliche Pflege. Gerade deswegen die Wassertechnologie laut Wintgens ein spannendes Thema für eine öffentliche Veranstaltung: „Wasserqualität ist jedem von uns wichtig und es besteht in der Öffentlichkeit ein grosses Interesse an diesem Thema.“ Gleichzeitig würden die Wassertechnologien aber auch Firmen die Möglichkeit bieten, innovative Produkte zu entwickeln und Stellen zu schaffen.

Seit 2009 Plattform für das regionale Netzwerk
Die HLS FHNW veranstaltet seit 2009 gemeinsam mit i-net/BaselArea.swiss die Veranstaltungsreihe im Bereich Wassertechnologie, welche jährlich rund 120 Teilnehmer anzieht. Die Idee, eine Eventreihe zu starten, entstand aus der Überzeugung heraus, dass Wasser in der Region ein wichtiges Thema ist und hier die Wertschöpfungskette vorhanden ist», so Thomas Wintgens. Jedes Jahr setzten die Verantwortlichen neue Themenschwerpunkte, zum Beispiel Mikroverunreinigungen im Wasserkreislauf, Membranverfahren oder Phosphor-Rückgewinnung. Wintgens erklärt: „Jedes Jahr machen Akteure aus der Forschung, der Technologie oder dem Bereich der Anwendungen mit und präsentieren sich vor Ort“.

Der Plattform-Gedanke war den Initianten von Anfang an wichtig, der Event sollte das regionale Netzwerk stärken und Innovationsvorhaben ermöglichen. Diese Strategie hat sich laut Thomas Wintgens bewährt: „Der Anlass ist ein wichtiger Baustein in unserer Öffentlichkeitsarbeit und wurde zu einem festen Treffpunkt der Interessenten und Kooperationspartnern aus der Region“. Viele Teilnehmer würden den Event schon seit Jahren verfolgen und seien jeweils neugierig auf das Thema im nächsten Jahr.

BaselArea.swiss und die Hochschule für Life Sciences FHNW  (HLS) führen am 25. Oktober im „Gare du Nord“ in Basel ein Symposium unter dem Titel „Keime, Antibiotikaresistenz und Desinfektion in Wassersystemen“ mit Referenten aus den Bereichen Forschung, Verwaltung, Wasserversorgung und Technologieanbieter durch. Eine Anmeldung bis 19.10.2016 ist erforderlich.

report Production Technologies

Industrie 4.0 am südlichen Oberrhein

03.04.2018

report Production Technologies

Speed Dating 4.0 in Gaggenau

02.04.2018

report Life Sciences

«It would be very good to try to widen everyone’s vision of what you can do with biology –...

11.06.2015

Neil Goldsmith and two colleagues started working on Evolva in 2001, moving its headquarters from Denmark to Reinach in Switzerland in 2004. The «Brewers of 21st Century» discover and provide ingredients produced with the help of biologically engineered yeast. CEO Neil Goldsmith explains in the i-net interview how this works and why, initially, they received their seed money for another business model.

You call yourselves the «Brewers of 21st Century». What does that mean?
Neil Goldsmith*: We make ingredients for food or cosmetics by genetically engineering baker’s yeast and brewing it. If we want to make Stevia for example, we take the genes the plant uses to make that molecule and put those genes into the yeast so the yeast can make the molecule. We then ferment the yeast by brewing, just like with beer. The yeast takes up the sugar, turns it into Stevia and pumps it out; we filter off the yeast and have Stevia in the «broth» which we can purify out.

Why should biosynthetically brewed Stevia be better than the grown one?
The Stevia plant makes a lot of sweet molecules. However most of these molecules start to taste bitter when you use a lot of them – that is why the current Stevia-based soft drinks only have about a one-third reduction in the level of sugar or high-fructose corn syrup. Now, the plant also makes some molecules that do not give a bitter taste, but it makes very small amounts of them. Therefore it’s not economic and sustainable to grow the plant to produce these molecules. But creating Stevia by brewing it is a very promising alternative.

So with yeast, you can make almost anything?
In principle, we can make anything that occurs in nature. The key is combinatorial genetics. For the yeast to turn sugar into Stevia it needs 32 genes that have to work together: Finding what those genes are and optimizing them so they all work well together is what we are founded around. It’s in principle more complex than making an antibody or an enzyme, because that’s just one gene or one protein. We were intrigued by the idea of taking the combinatorial thinking of chemistry and applying it to genetics. You can use our approach to make old molecules in better ways – which is what we do now – or you can use it to make new molecules, which was the original idea. You would get new structures that have never been seen before and they might cure diseases.

Evolva has pivoted from pharmaceuticals to the nutrition sector – how did this come about?
We pivoted because we weren’t finding interest from the pharma companies for our technology. Instead, food and cosmetic companies were approaching us. We initially agreed to work for some of these companies just to bring some money in. After a while, we started to understand that the business itself looked interesting. Then we had to persuade our investors, who invested in us because we were going to develop a new diabetes drug, that switching to food and other ingredients made sense.

A completely different market?
Yes and with lower margins. But also less risky, with lower development costs and much less competition compared to pharma. Today we’re actually a network business; our analogy is a railway company. Two molecules that might be very, very different – take vanillin and benzocaine, an anaesthetic – are actually on the same railway track from the yeast point of view. So we want to build and own this track and own that network. If we invest in making vanillin well, that also gets us towards benzocaine. It was interesting to realise that there are many different products by simply pursuing the same track. Maybe they’re not all so big in market terms, but they are built on the same research and can be produced with the same infrastructure: Everything is brewing. So you can produce one product this week and another one next week. Also it is possible to respond very quickly to market demand.

Pharma start-ups are mostly being exited through a trade sale. Will Evolva be a different story?
The food and personal care industries have seen very little transformative innovation. Companies typically spend only very little on R&D and that gives the opportunity to build something transformative. In pharmaceuticals you can’t do that because the big pharma companies will spot you and adapt pretty quickly. In a way it’s a problem for the biotech industry that it has stayed so reliant on pharmaceuticals and not innovated its business models for 30 years. In the ingredients business everyone collaborates with everyone, and by partnering and building a network you can get the resources you need. Using the railway analogy: If you want to build a track from Basel to Geneva and you want to fund this track, you fund it by selling off Yverdon-les-Bains to someone who wants this station, meaning this product. In pharma, this way of thinking is not possible. So I really believe we can grow our business organically and remain an independent company.

What is your business strategy with Evolva?
We want to make products where there is a clear benefit, not just that we can make it cheaper but also that we can make it better, like Stevia. We don’t want to compete with the big companies. Instead we are looking to develop products which have a new market or can open up a new market. In a nutshell, we focus on «high priced, small volume» in the health, wellness and nutrition industry. One of our latest products is Nootkatone, a grapefruit fragrance that turned out to be very good at killing and repelling the ticks that transmit Lyme disease. There is an unmet need for that and we have a product that is very safe, it smells nice and it’s very good at both repelling and killing the ticks.

Will you do the production yourself or enter into a partnership for the production?
At the moment, all we have is labs. In some cases we have a partner who does it, and in other cases we pay someone on a contract basis. But in the long term we want our own brewery, because it’s a business with constant improvement and ultimately, you need to have the bug and the brewery integrated. If you want to be flexible in manufacturing, it needs to be your facility. But this is a long-term plan that costs many tens of millions of dollars. We don’t want to do that too quickly and then find that we can’t sell enough products quickly enough to justify that.

Would you do that in Switzerland or somewhere else in the world?
I wouldn’t completely rule out Switzerland; it’s obviously a high-cost location for manufacture, but it’s possible to run these facilities pretty lean and there is a value in this market to being Swiss. If you’re selling a food ingredient and it’s a Swiss food ingredient you get a certain quality association. We don’t know the answer yet, but I think there will be something in the States and something in Europe.

Let’s talk more about the buzz around high-tech food, which is sustainable and healthier. There seems to be a lot of attention surrounding this issue that suggest you may be in the right place at the right time.
It’s clear that a lot of megatrends in society converge in the space we occupy at present. It started about four to five years ago, and it has taken a few years to build a momentum. But we don’t know how it will play out in reality. What’s going to be interesting is that food is fundamentally a very conservative culture, and innovation– by definition – is not. So how do you marry these cultures? If you look at the big food companies and if you take brewing beer, it’s a very conservative industry. But the rise of craft brewing is really challenging that. There are people experimenting with different flavours of beer made from different ingredients. The same could happen with synthetic biology: Innovation happens in small companies.

Is there a technological driver behind this trend?
I don’t see the development as technology driven; it’s rather about adapting technology to these needs because technology sort of arises for other purposes. Look at the smart farming movement: It’s just applying sensors; now you can image every single corn plant in the field and data mine. I think it’s more that various technologies have matured to the point where they can start to be used here, because they need to be robust and relatively affordable, and then you start to assemble them together. Now you can set up a biotech lab in your garage and start to do stuff – this is new for biotech. And it does raise important questions as to how we control it. There is no way you can track every single garage around the world.

What is the potential in this region; should there be more attention for this field?
I think it would be very good to try to widen everyone’s vision of what you can do with biology, because it’s not just cancer drugs. I think the limiting factor is investors, and that’s really why there are so few people in this space currently. Traditional biotech investors are investing in medical stuff – we only got our money because we started off doing that. We would never have got the money if we started off doing what we now do. I think you need new kinds of investors.

They are mostly likely to be found in Silicon Valley.
Yes, we need people that really think hard and deep about where trends will be and start playing there. Europe is not so good at doing that; it only follows. We need a different mindset. If you look at Silicon Valley, most of the people who are in the nutrition area come from the IT sector, whereas the biomedical guys find it very hard to get out of their way of thinking. The UK investment in food and agricultural research has declined, and you don’t have equivalents in Europe to the movement in the US of teaching farmer’s kids technology.

Next year will be a big year for you with Stevia hitting the market, will that be a booster? What do you expect?
We have a product we are very confident of in terms of taste and competiveness. Potentially, it’s very big. It’s clearly got the possibility of being a billion-dollar product in terms of revenue. But will it get there? We don’t know. It will take some years to get into the market. These products typically have 5 to 10 years to achieve peak sales, because we’re in a slow-moving industry. Unlike a pharmaceutical product that gets picked up immediately by the healthcare industry, market incumbents in the nutrition sector don’t change their flagship products and brands overnight. They normally extend their product lines gradually.

Interview: Thomas Brenzikofer and Nadine Nikulski, i-net

*Neil Goldsmith is co-founder and CEO of Evolva SA in Reinach. He has a 25-year track record in building successful biotech companies, among them TopoTarget A/S and Personal Chemistry AB. Earlier in his career, he was Chief Executive Officer of Auda Pharmaceuticals, GX Biosystems and PNA Diagnostics.
He received a first-class BA Honours degree in Zoology from Balliol College, University of Oxford, and is a graduate of the New Enterprise Programme at the Scottish Enterprise Foundation, University of Stirling.

About Evolva
Evolva was founded by three people, Neil Goldsmith and two others as a spin-off of the US company Phytera, that was doing plant cell culture, had a lot of plant genes and was trying to find a way to put them in a host that was more robust than plant cells. Phytera IPO failed and the company needed to cut costs. It was clear that the project of putting the genes into yeast was going to be one of the things to be cut. Neil Goldsmith wanted to take this out and found a company around it. So in 2001 they set up Evolva – initially in Denmark – and raised some seed money just before 9/11. In 2003, they thought they had enough to raise a proper round as the market had improved. At this point the three partners already wanted to change our headquarters to another location than Denmark, as the country «wasn’t world class» in the field of small molecule pharmaceutics. In addition, they wanted to be where there was more money available. They looked at the States, Canada, UK but ended up choosing Switzerland.


Video explaining the fermentation process

report Micro, Nano & Materials

Discovered! Innovative Chemistry by companies and students in Basel

18.12.2017

report Production Technologies

VR, AR, mixed – three words for reality

14.12.2017

report Production Technologies

«Ungenutzte Biomasse hat ökonomisches Potenzial - dieses Bewusstsein ist enorm gewachsen»

09.04.2015

«Biotechnological use of untapped biomass for the future bioeconomy of Switzerland» heisst der i-net Cleantech Technology Event, der am 21. April 2015 an der Hochschule für Life Sciences FHNW (HLS) in Muttenz stattfindet. Philippe Corvini, Professor für «Environmental Biotechnology» und Leiter des Institutes für Ecopreneurship an der HLS, erklärt im i-net-Interview, warum der Anlass einen Besuch wert ist und welche Chancen die Biotechnologie für die Nordwestschweiz birgt.

Sie leiten das Institut für Ecopreneurship an der Hochschule für Life Sciences an der Fachhochschule Nordwestschweiz. Was heisst Ecopreneurship genau?
Philippe Corvini: Der Begriff «Ecopreneurship» verweist auf die Tatsache, dass Umwelttechnologie auch zur effizienteren Ressourcennutzung sowie zu weniger Energieverbrauch beitragen kann und damit auch ökonomisch sinnvoll ist. Das heisst, neben Forschung zu betreiben möchten wir auch zum unternehmerischen Handeln beim Einsatz von Umwelttechnologien anregen. Wir tun dies in drei Bereichen: Bei der Umweltbiotechnologie und Umwelttechnik geht es um den biologischen Abbau und den physikalisch-chemischen Rückhalt von Schadstoffen wie auch um die Rückgewinnung von wertvollen Stoffen. In der Ökotoxikologie untersuchen wir die Effekte von Chemikalien oder neuen Materialien auf Organismen und in der Gruppe für nachhaltiges Ressourcenmanagement geht es um Gesamtbetrachtungen die zu ressourceneffizienter und umweltfreundlicher Produktion führen.

Wie kann Biotechnologie unsere Umweltprobleme lösen?
In der Umweltbiotechnologie macht man sich lebendige Organismen zunutze, die Schadstoffe entweder zurückhalten beziehungsweise akkumulieren oder aber als Nahrung aufnehmen und in weniger toxische Stoffe umwandeln können. Dabei kommen nicht nur Bakterien zum Einsatz, sondern auch Pilze, Algen und andere Pflanzen. Ein gutes Beispiel ist die Abwasserreinigung: Bakterien werden dem Abwasser zugesetzt und ernähren sich, indem sie gewisse Stoffe aus dem Abwasser abbauen. An einem bestimmten Punkt gibt es dann zu viele Bakterien und es entsteht überschüssiger Schlamm. In einem Faulturm wird dieser Schlamm dann von anderen Mikroorganismen verdaut und dabei entsteht Biogas. Ein weiteres Beispiel dafür, wie Biotechnologie Umweltprobleme lösen kann, sind Biofilter: In diesen wirken Bakterien, die sich von Lösungsmitteln aus der Abluft ernähren und so Schadstoffe abbauen.

Durch Biotechnologie versucht man also biochemische Prozesse so zu steuern, dass sie für die Umwelt keine ungünstigen Auswirkungen mehr haben?
Tatsächlich dominieren die Themen «Minimierung der Auswirkungen» und «Sanierung» im Umwelttechnologie-Bereich. Es geht darum, den Schaden, der durch menschliche Aktivitäten entstanden ist, zu minimieren oder rückgängig zu machen. Die Forschung an der Hochschule für Life Sciences FHNW geht aber darüber hinaus. So untersuchen wir auch, wie neue Substanzen, die etwa über Medikamente in die Umwelt gelangen, abgebaut werden können. Von daher haben wir viele Schnittstellen zur pharmazeutischen Biotechnologie. Denn wenn man weiss, wie Bakterien einen Stoff abbauen können, ist das auch für die pharmazeutische Industrie interessant. Ein Beispiel ist das Antibiotikum Sulfamethoxazol. Wir haben ein neues Bakterium gefunden, das infolge einer Genmutation gegenüber Sulfamethoxazol resistent ist und sich sogar von diesem ernähren kann.

Wo sehen Sie derzeit das grösste Potenzial für Umweltbiotechnologie?
Neben den oben erwähnten Einsatzmöglichkeiten bietet die Nutzung von lebenden Mikroorganismen aber noch viel mehr. Sie sind auch wichtige Hilfsmittel, um ungenutzte Ressourcen weiter zu verwerten. Abwasser und Bioabfälle aus agro-industriellen und kommunalen Quellen werden gereinigt, beziehungsweise «hygienisiert», verbrannt oder noch in Biogas umgewandelt. Für die Schweiz am Relevantesten ist sicherlich Holz. Diese Biomassequelle sollte noch besser verwertet werden. Altholz oder Holzabfälle zu verbrennen bedeutet, die stofflichen Verwertungsmöglichkeiten nicht zu nutzen. Im Holz stecken wertvolle Moleküle und chemische Verbindungen, die man extrahieren kann. Neben Zellulose für die Produktion von Bioethanol ist besonders Lignin von grossem Interesse. Dabei handelt es sich um ringförmige Strukturen, die zur Herstellung von Chemikalien für die Industrie sehr wichtig sind. Bis heute werden diese ringförmigen Verbindungen ausschliesslich aus fossilen Quellen gewonnen. Holz wäre hierfür die sehr viel nachhaltigere Ressource.
Vielversprechend ist auch die Konvergenz von Umweltbiotechnologie und neuen Technologien wie die Nanotechnologie. Zum Beispiel kann der Einsatz von Nanomaterialien die biologische Sanierung von ausgelaufenem Öl effizienter machen. Zwar existieren im Meer natürlicherweise Mikroorganismen, die Öl abbauen können. Doch dafür brauchen sie viel Zeit, weil ihr Wachstum durch die Verfügbarkeit von Nährstoffen wie Stickstoff und Phosphor limitiert ist. Durch gezielte Zufuhr der limitierenden Nährstoffe kann die Abbaurate beschleunigen werden. Dies geschieht in der Regel durch Beigabe von herkömmlichem Dünger. Allerdings verdünnt sich dieser im Meer ziemlich schnell. Mit dem HLS-Kollegen Dr. Patrick Shahgaldian haben wir sehr poröse Silica-Partikel, deren Oberfläche wasserabweisend ist, mit Stickstoff und Phosphor gefüllt. Wegen der Eigenschaften dieser Partikel kleben diese dann förmlich am Öl und stellen dort gezielt Stickstoff und Phosphor für das bakterielle Wachstum bereit, was die Abbaurate des Rohöls signifikant erhöht.

Sind solche Anwendungen schon marktreif?
Einige Technologien werden bereits zur Dekontamination von Abwässern im Bergbaubereich, zur Rückgewinnung von Metallen oder für die Fermentierung von Bioabfällen eingesetzt. Zudem springen traditionelle Chemiefirmen hinsichtlich Bioabfallverwertungen auf den Zug auf, und es gibt auch interessante Chancen für Startup-Unternehmen. Generell ist festzustellen, dass derzeit unter dem Begriff Bioökonomie eine sehr diversifizierte Szene mit viel Wachstumspotenzial am Entstehen ist.

Und welche Rolle spielt dabei die Nordwestschweiz?
Es gibt schweizweit, aber auch global gesehen, noch kein etabliertes Bioökonomie-Zentrum. Europa scheint aktuell eine führende Rolle einzunehmen, wobei Asien stark aufholt. Für mich und mein Institut ist die Region Nordwestschweiz sehr interessant, weil wir hier neue Begeisterung für diesen Bereich entfachen können. Das Bewusstsein darüber, dass ungenutzte Biomasse ein ökonomisches Potenzial darstellt, ist in den vergangenen Jahren enorm gewachsen.

Am 21. April 2015 findet an der Hochschule für Life Sciences in Muttenz der i-net Cleantech Technology Event «Biotechnological use of untapped biomass for the future bioeconomy of Switzerland» statt. Was erwartet die Teilnehmer?
Die Veranstaltung, welche die HLS und i-net in Zusammenarbeit mit Swiss Biotech gemeinsam in unserem Haus durchführen, bietet eine tolle Übersicht über die Themen Biotechnologie und Bioökonomie. In den Englischen und Deutschen Referaten geht es um das Potential von Bioökonomie in Europa. Man erfährt von konkreten Beispielen und lernt Zulieferer, Anwendungen oder Forschungsprojekte kennen. Wir hoffen, dass wir interessierte und neugierige Teilnehmer mobilisieren können. Immerhin ist es der erste Anlass in der Region, der sich spezifisch diesem Thema widmet.

Interview: Sébastien Meunier und Nadine Nikulski, i-net

Philippe Corvini ist Professor für «Environmental Biotechnology» und Leiter des Institutes für Ecopreneurship an der Hochschule für Life Sciences FHNW. Er arbeitet an verschiedenen wissenschaftlichen internationalen und nationalen Projekten. Er ist Vize-Präsident der European Federation of Biotechnology und repräsentiert und leitet die Sektion «Environmental Biotechnology». Daneben ist er Scientific Advisor und Mitbegründer der Inofea AG und gehört einem Beratungsgremium des Bundesamtes für Umwelt an. Weiter ist er Co-Leiter der Plattform «Bioresource Technology» des KTI F&E Konsortiums Swiss Biotech und hält zwei Professuren am Yancheng Institute of Environmental Technology and Engineering der Nanjing University.

Philippe Corvini hat in Nancy Biotechnologie studiert und erforschte nach seinem PhD in einem interdisziplinären Projekt in Deutschland, wie Bakterien Schadstoffe abbauen. Er hat die Habilitation an der RWTH Aachen bekommen und hat sich nun an die Universität Basel umhabilitiert.

report Innovation

Swissbau Innovation Lab: Interaktive Einblicke ins digitale Bauen

07.11.2017

report Production Technologies

Austausch unlimited: Grenzüberschreitende Industrie 4.0

07.11.2017

report Medtech

Industry 4.0 – what’s the impact on other sectors?

28.01.2015

On January 22, 2015, NZZ published a very interesting set of articles about the silent revolution in industry and production: industry 4.0 is the digital interlinking of production and value chains (see links below).

The revolutionary phases in industrial production were the introduction of the steam engine and water power, which allowed mechanized fabrication (industry 1.0), the invention of the conveyor-belt, which allowed mass production (industry 2.0), and computers and robots, which enabled automated production (industry 3.0). And today, the next industrial revolution is enabling the physical and virtual systems to be merged through the internet of everything (industry 4.0). The results of digital production are the vertical interlinking of intelligent production systems (smart factories) and the horizontal integration of global value chains, including suppliers and customers.

The sensing of everything becomes reality – not only in production, but also in mobility (self-driving car), in health (quantified self), in logistics (real-time tracking) or in finance (high-frequency trading). But this is only the tip of the iceberg. Sensing and listening (in terms of data exchange) will inform every aspect of what we do. But how do we get the essentials from the vast, unstructured data and how can we benefit from this becoming more effective, more sustainable, more innovative, improving safety, reducing risks and finally improving our habits?

Apart of sensors and data storage, we also require smart brains and emulation power, such as lateral thinking, lean management (bad processes remain bad, even if they become smart through the latest technology) and expert systems (smart and self-learning algorithms based on large data sets, which make decisions without human interaction). The future is bright; some potential advantages include the prediction of failure and conflicts (and thus hopefully their prevention), the personalization of products, services and therapies, automatic maintenance, self-organized logistics, the share economy, energy efficiency in all aspects of our life and so on.

The threats and challenges are also enormous: Data privacy, protection against industrial espionage, data security measures, data banking and so on. Sound solutions are required. We have a lot of opportunities in Switzerland from the internet of everything and expert systems, not only in industry, but in all manner of applications for our daily life. Swiss data banking and Swiss secure cloud are two such potential opportunities. Learn about more the opportunities from the i-net Technology Trend Forum and the i-net technology and business related events.

Related NZZ articles:
«Das Internet kommt in die Fabrik»
«Evolution statt Revolution»
«Auf dem Weg in die Arbeitswelt 2.0»

i-net related information:
Article about the i-net Tech Trend Forum
List of i-net Events

report Production Technologies

The Swiss Conference on Printed Electronics and Functional Materials

21.09.2017

report Innovation

La réalité augmentée dans le monde industriel

05.09.2017

Cookies

BaselArea.swiss uses cookies to ensure you get the best service on our website.
By continuing to browse the site, you are agreeing to the use of cookies.

Ok