Innovation Report

 
report Precision Medicine

“Momentum for blockchain in healthcare is growing in Basel”

03.12.2018

Marco Cuomo and Daniel Fritz from Novartis got engaged in blockchain two years ago. Today, their aim is set high: With other pharma companies under the Innovative Medicines Initiative, they formed a “Blockchain Enabled Healthcare” program, due to kick off in 2019. The program that they presented at the Blockchain Leadership Summit in Basel – Switzerland’s largest conference in this field - wants no less than to define how blockchain is applied in healthcare.

BaselArea.swiss: You both work for Novartis that is known for pharmaceutical products but not for technology. How come you started to explore the possibilities of Blockchain in the first place?

Marco Cuomo: We got curious about blockchain and wanted to know which problems we can solve with the technology. A handful of interested people had an informal meeting, we formed a group and basically got to the essence of blockchain. That started two years ago.

What did you find?

Marco Cuomo: First of all we found use cases to learn more about it. This is how the supply chain got on our radar because Blockchain is applicable to tracking and tracing. We involved Dan who is our Supply Chain Domain Architect to build a supply chain from the manufacturer to the pharmacy with LEGO robots…

Daniel Fritz: …where we integrated IoT sensors for temperature and humidity as well as a counterfeit product check. We learned for ourselves about the power of blockchain and what is possible.

Marco Cuomo: Our LEGO demo clearly helped to illustrate our point internally as well as externally. We also quickly realized that other pharmaceutical companies must have the same discussions. So we brought other companies to the table.

Why did you not just develop something on your own?

Marco Cuomo: Of course, you can have for example your own cryptocurrency – and then what? To exchange it, you need other parties who use the same cryptocurrency as you do. No, blockchain is not just a new technology that you learn, implement and benefit from. The key feature is to transfer something valuable from one party to the next. Take the supply chain of pharmaceutical products that involves the manufacturer, the distribution center, wholesale, pharmacy, doctor and hospital. Here, blockchain starts to make sense. 

How so?

Marco Cuomo: With blockchain, you do not have to change any supply management system on your side. Instead, you create a kind of common ground. You do not need an intermediate as blockchain is taking that role. We tend to say that it is a team sport because everybody has to play by the same rules.

What is in it for the life sciences industry?

Daniel Fritz: When we show and explain what blockchain is about, we not only cover the basics. Instead, we also look on what we could potentially design as a solution to build upon the regulatory framework. People think, wait, we can even go beyond the law and uncover some business value. I think most people can quickly see that blockchain offers many benefits over the existing technologies that we have in place.

Marco Cuomo: What is in it is efficiency which comes down to saving money, be faster and more secure. Electronic records can be transparently shown in the blockchain. If something fails in the cool chain, everybody can see what happens immediately. Now you wait till a product arrives at the target to then find out that it is flawed and finally start the process for a resend. With blockchain the flawed product never even has to leave the manufacturer.

Daniel Fritz: With other supply chains it is similar. People want to buy organic food – how do you know it is bio? With blockchain, we can guarantee the provenance of a product and remove or reduce counterfeits from the supply chain. This benefits the industry and the patients.

Marco Cuomo: Speaking of patients: It is the holy grail to bring patients in control of their data. Today the data sits in the different silos, with the hospitals, with physicians for example. With the blockchain, we think there is the potential to open that up so that patients can decide who sees my data.

Where do you see other advantages of Blockchain based healthcare?

Marco Cuomo: Our CEO Vas Narasimhan has the vision to create a medicine based on data only, from real world evidence. Blockchain can help to track and trace the data to guarantee its proper provenance. Another opportunity are data marketplaces where you can offer your data to pharmaceutical companies and researchers. Blockchain could help with that. Where normally it would take time to build up the trust for such an exchange of very sensible and valuable data, there is no need for that with blockchain. Novartis hopes that we can use this data to create new medicine in the future. We are also looking into third party risk management.
How can we make sure that our suppliers comply to our labor and safety rules? Why should we have the same audit ten times a year instead of once? Why should these assessments not be owned by the supplier – if we are guaranteed that the supplier is not manipulating them?

You started two years ago as a small group. Where are you now?

Marco Cuomo: We realized that we need to define certain standards to lay the infrastructural ground for Blockchain in healthcare. That is why we submitted the project “Blockchain enabled healthcare” with the Innovative Medicine Initiative where Novartis is already heavily engaged with more than 100 projects. We convinced eight other companies to join: J&J, Bayer, Sanofi, AstraZeneca, UCB, Pfizer, Novo Nordisk, and AbbVie are part of it. The money comes half from the industry, the other half is from the EU, in total 18 million Euro for three years. Applications for the consortium that should include hospitals, labs, patients, SME and universities to work with us closed in October. After that, we will form a project together and start with it late next year.

What is blockchain enabled healthcare about?

Marco Cuomo: The main goal is to define standards to create a governance body that will last longer than the project itself. Like the W3C, the World Wide Web Consortium that is defining technical standards of the web, we hope to be the same for Blockchain in healthcare. Take the internet – it also needed someone who defined some standards so everyone could build on that. The same will happen here, hopefully. Imagine if Novartis was to implement their own blockchain and has to convince thousands of suppliers to use it. If the next company does the same, end-to-end product tracking becomes impossible for the parties involved. Why should doctors use our system or the other one? Also, the patient journey does not only include pills from Novartis. You need a standard.

How easy was it to convince the other companies to come on board?

Daniel Fritz: Some of the companies we asked jumped on board immediately. Others needed to understand our vision in more detail. So we had a lot of talks which were very positive as we were able to establish a high level of trust and collaboration within the consortium, which is really what blockchain is about.

In which ways did it help to be in Basel to start this journey?

Marco Cuomo: It started here and Novartis is leading it. All the companies and the academia we talked to form the initial approach to the program are close. It also helps to have a CEO who strongly supports digital initiatives and a CDO who sees the potential.

Daniel Fritz: Momentum for blockchain in healthcare is growing in Basel, in Novartis, and globally. It will benefit patients and the industry, but we have a lot of hard work in the consortium and with public partners to get there.

About

Marco Cuomo is Manager of Applied Technology Innovation and a Senior Digital Solutions Architect with Novartis. He started with Novartis in 2005 as a Business Informatics Engineer and gained a Bachelor of Science in Business Administration.

Daniel Fritz works as the Supply Chain Domain Architect at Novartis. Before that he was an engineer officer with the US Army and a Materials Manager. He studied at the US Military Academy at West Point and gained a Master of Business Administration from Duke University.

report Life Sciences

Resistell closes successful financing round

11.12.2018

report Innovation

BaselArea.swiss fights antimicrobial resistance as a part of the CARB-X Global Accelerator...

04.12.2018

report Life Sciences

“Our business is the most beautiful business in the world”

04.09.2018

Giacomo di Nepi has a successful history: A high level executive in big corporations, he transitioned towards biotech, currently as CEO of Polyphor, which, in May 2018, he led to the IPO. We spoke to Giacomo about serving patients, the timing for an IPO and the people needed in a biotech.

BaselArea.swiss: What do you check first these days – your emails or the stock market?

Giacomo di Nepi: Emails and meetings are still more important on a daily basis. Of course I check the stock market but the volatility is such that I stopped to try to interpret the market in the short term. But of course I look at it in its development and my commitment is clear to have the stock appreciating and increasing the value delivered to the shareholders who put their trust and investment in our ideas, technology and team.

You served in big corporations such as McKinsey and Novartis. What made you join a startup like Polyphor?

Sure, I come from multinationals, but I worked elsewhere, too. My last job was with InterMune, a Californian biotech. I started the operations in Europe from zero, from my home. If the weather was nice, we moved our meetings from the dining room into the garden. This grew into an operation of 200 people, bringing the drug to the patients affected by idiopathic pulmonary fibrosis. With a startup, you have the possibility of looking at all the dimensions of a company from a much broader perspective. Therefore, Polyphor was attractive for me, but there were other reasons, too.

Such as…?

… the dramatically fantastic science which certainly is one of the fundamentals. Polyphor is a company that has discovered the first new class of antibiotics against Gram-negative bacteria in the last 50 years. This is radical innovation. Antimicrobial resistance is becoming a huge problem. You have patients that get an infection, then are treated with 20 different drugs and they die nevertheless. This is unacceptable. Pneumonia from Pseudomonas aeruginosa today has a mortality rate of 30 to 40 percent. Also, when a woman has metastatic breast cancer and is in her third line of chemotherapy,  she has very few therapeutic options and her prognosis is devastating. We want to save lives and give more time to patients. This is what for me makes our business the most beautiful business in the world. It is heartbreaking to see these patients.

So you meet with patients?

Sure. Lately, I brought a patient to Polyphor: A fantastic woman with colonization of Pseudomonas took part in the earlier trials. She has great courage and a willingness to fight for life that is really moving and inspiring for all of us. She talked about her experience because I believe that everybody should have a touch of feeling of what we are trying to achieve, such as people not directly involved in development, for example working in units such as in accounting who normally only see the invoices for the trial.

Polyphor underwent a transformation from research to R&D focused biopharma company in the last couple of years. How did the organization digest the change?

When you move from one stage to the next stage, you raise the bar because in development, projects are multi-year, complex projects with big expenditure. It really changes the mindset. Personally, I like change. I am not interested in doing administration. And this particular change was necessary. This being said, we still have a big research operation focused on antibiotics and immuno-oncology, that we want to keep to find and build excellent compounds.

Basel seems to have become a hotspot for antibiotics recently.

Antibiotics have been disregarded by many large companies. But it is like in the Pascal law: if there is an empty space, something will fill it. Smaller, entrepreneurial companies are now taking the lead worldwide – and Basel is one of the key spots. Clearly, we have a very strong science base in Basel. If you want to do R&D, Basel is the best place to do it, in my opinion. And, I would not be surprised if large companies will be back….

Polyphor listed on SIX Swiss Exchange in May 2018 and raised 165 million Swiss francs. Why was an IPO the right option for Polyphor?

If you are lucky, you find a biotech with one product that is one step away from the market. We have two products that are one step away from the market: Our antibiotic Murepavadin has entered phase III while we negotiated a program with the FDA to bring our immune-oncology drug Balixafortide to the market with only one pivotal study. That puts us in a unique position. However, these studies required a lof of capital. Thanks to going public, we have the resources to develop our products and, when successful, bring them to the patients who need them. The IPO was a necessary tool given the stage of the company.

Which conditions had to be met for the IPO?

An IPO is an interesting exercise. It’s a bit like undergoing a complete physical examination. The investors don’t know the company, yet we want them to support our ideas, our vision and our team. That means they need to trust us. To gain that trust you have to be completely transparent and explain in every detail what the company is about, what the opportunities and risks are. In the end, the results were fantastic because we’ve been the largest biotech IPO in Switzerland within the last ten years. And, we’ve been one of the top 3 in Europe in the last three years.

How influential was the timing?

Timing is important, but it is not determining. The first quarter of 2018 was very good for IPOs but the second quarter was not stellar. A dozen IPOs were pulled during that period. It may happen that you have a valid IPO but don’t do it because the timing is wrong. However, you never have a non-valid IPO that you do because the timing is right.

Which reactions did you get towards Polyphor’s IPO?

Internally, we are super happy that we can work towards bringing our drugs to the patients. At the same time, we are very conscious of the responsibility and very committed. Externally, our IPO is a demonstration of the capability Switzerland and particularly the Basel area have in pharmaceuticals. The IPO was a moment of visibility, of public recognition. In a way, an IPO shows how investment-intensive this business is. I hope it’s a good sign for the whole industry that we are capable of starting new companies, making them flourish and bringing new therapies to the patients.

Why did you choose the Swiss Exchange?

We already had quite a large shareholder base in Switzerland, so it was natural to go to the Swiss stock market. We were a known entity. Switzerland is a fantastic market, I am happy with the choice. In fact, I wonder why it is not chosen more often. There are available funds, there are investors that are familiar with pharmaceuticals and that are willing to take the risk.

What are the plans for Polyphor for the next couple of years?

Our vision is clear: We want to become a leader in antibiotics and help fighting and reducing the threat that comes from multi drug resistant pathogens. At the same time we want to advance a new class of immune oncology drugs. We are developing third line therapies for metastatic breast cancer. The women affected by this have very few therapeutic options. However, we believe that the potential of the drug can go beyond this patient population, for example in earlier lines of breast cancer and to other combinations and indications. This would bring us to a much more competitive field.

How do you get there?

We have to make sure that we have the organization and the culture that allow us to perform our studies effectively. We want to make sure that the pieces of the organizational machinery are in the right order and that we have all the competences that we need.

What do you do to achieve this?

I recognize talent as one – if not the – key component of success for a company. Consequently, I dedicate a lot of effort and a lot of commitment to do this task. I interview candidates two or three times, I don’t mind. I also have them interviewed by their future colleagues. When I was at Novartis, I had fantastic experiences with the young high potential. Why? Because they have the brains and the capability. It doesn’t matter if they have little experience because the rest of the organization is stuffed with it. It is different in biotech where you absolutely depend on hiring people with relevant experience since no one else has it in the company.

And how about the cultural changes when transitioning from big pharma into a biotech?

Experience, however, is only part of the story. I met a lot of people who have experience – but are not able of making a photocopy and need three people reporting to them in order to be able to achieve anything. They are not good either. That is why I look for a sort of “schizophrenic profile”: In biotech you need people who have experience, capability and vision while at the same time they need to roll up their sleeves, be practical about their choices and do things on their own.

Interview: Annett Altvater and Stephan Emmerth

report Invest in Basel region

BaselArea.swiss welcomes CMAB to Basel

03.12.2018

report Precision Medicine

Three projects to start in the DayOne Accelerator

03.12.2018

report Invest in Basel region

Basel pharma companies invest most in R&D

15.07.2018

The 24 Interpharma companies spent a total of 96 billion Swiss francs on research and development worldwide in 2017. Of this, 7 billion francs were invested in Switzerland. When compared with the sales they generated in Switzerland, the companies’ Swiss research investment was more than twice as high. According to the association, this is a testament to the great significance of Switzerland as a research location and the innovation taking place at these companies.

Investment in research and development has been especially high among companies that have their headquarters in Switzerland, such as Roche and Novartis.

Interpharma highlights the key role the pharma industry in the Swiss export sector plays. The association also notes that more than 86 patents were registered per million employees in pharmaceutical research in Switzerland between 2012 and 2016. This is more than double the number of Denmark and five times as many as in Germany.

Among the Interpharma members are companies such as Novartis, Roche, Pfizer, Astra Zeneca, Sanofi, Lilly, Johnson & Johnson, Bayer or GlaxoSmithKline.

Investments in the future

How committed the life science companies are to Basel is also reflected with regard to their planned investments which is as high as 6 billion Swiss francs. Roche, for instance, is in the process of renewing its Basel and Kaiseraugst sites. By 2023, the company with the long heritage in Basel will have invested 3 billion Swiss francs into their infrastructure. Some buildings are being modernized, while others are rebuilt completely. Bau 1, with 178 meters the tallest building in Switzerland, was opened in 2015 and cost 550 million Swiss Francs.

The remarkable tower that was designed by world-class architects Herzog & de Meuron from Basel provides workspace for approximately 2000 employees. Meanwhile, the big brother is under construction: Bau 2 will be 205 meters high and provide space for approximately 1700 employees. At the Kaiseraugst site, the group constructs an IT hub to gather all IT functions under one roof whilst taking the strategic role of technology and the growing numbers of IT employees into account. Roche will invest more than half a billion Swiss francs in Kaiseraugst.

More investments are under way in Basel:

The Swiss Tropical and Public Health Institute invests 90 millions Swiss francs in their new building in Allschwil, providing 900 workspaces. The new building is due in late 2020.

The Biozentrum of the University of Basel constructs a site for students and researchers, spending 328 million Swiss francs. Further, the University builds a Life Sciences Campus, concentrating different disciplines in one location to foster collaboration. The Department of Biosystems Science and Engineering of the ETH is also part of the project.
The University Hospital of Basel will realize a new building by 2032, costing approximately 1,2 billion Swiss francs. In 2017, the hospital opened new state-of-the-art surgery facilities.

report Life Sciences

Polyphor wins Swiss Technology Award

26.11.2018

report Life Sciences

Santhera and Idorsia join forces

26.11.2018

report Life Sciences

"Processes Kill Innovation"

03.07.2018

The serial entrepreneur Neil Goldsmith is drawn to new ventures. We spoke to him about discovering talent suitable for start-ups and about his current involvement with BaseLaunch.

You have founded and led a number of companies over the last 30 years. How did you know that entrepreneurship was for you?

It was a complete coincidence. I was aiming for a PhD but an unexpected policy issue disrupted my plans and I wondered what I should do next. My first company worked in the area of applying game theory to the advertising business, but I soon realised that this did not entirely correspond to my interests. It was at this point that I came across a job offer in the Sunday Times: a consulting company was looking for someone to launch and advise new life sciences companies. One of these companies was located in Sweden, and they hired me later as a troubleshooter for business development. Afterwards, I was offered the role of CEO in a Danish diagnostics company which was soon sold to Roche – by which time I was 31. The investors in that company proceeded to ask me if I could become the CEO of two more of their portfolio ventures, and so it went from there, with my gradually becoming increasingly proactive in the actual creation of new ventures. You could say that I took the initiative, but it was actually my career which sort of found me.

You often participated in small companies that grew big. How did this transition influence the possibility to innovate?

In my understanding, innovation means that you see something others have not seen yet. This is far more likely in small companies. Big companies have to develop processes sooner or later – and processes kill innovation. You can always find exceptions, and there are possibilities to delay the effect of processes. Google, for example, pushed a lot of decision-making out to the guys at the front line to ensure innovation. But my belief is that the processes will always get you in the end.

What is the biggest difference between managing a private and a public company and where are you more at ease?

Switching from a private to a public company means your investors and your board change. In private companies, investors and board tend to mingle; the people on your board have a lot of skin in the game themselves. Once you are public, these roles usually split, and board members become more like “guardians”. While they can be very good people, they will, for example, inevitably be more risk-averse – which might be completely right for a bank, but I am not sure if it is good for technology ventures. Being public also changes the communication style of a company. In a private company, discussions can be more open. So, as you might guess, a private company is more my thing.

What do you find crucial for starting an innovative company?

Finding the right people is the single biggest challenge. It is not so much the specific skills that are difficult to find; it is the ability to function in a very fluid and ambiguous environment. You will not have all the resources or information you need, but you still need to be able to make smart decisions. Especially for senior staff from big corporations it can be challenging to adapt to a start-up. Everybody has an early learning curve, but if you see people who joined a few months ago wanting more structure and regarding their fluid working conditions as chaotic, then they will probably not adapt – though of course there are roles where you must have structure. I would say it works out half the time.

You decided to relocate the last company you headed, Evolva, to Switzerland. You left Evolva last year, but you are still in Switzerland…

Evolva’s origins were Danish, but we faced the problem of a limited pool in terms of money and people for what we wanted to do at the time. We discussed the UK, the United States and Switzerland as possible locations, and finally we chose Switzerland. As a life sciences hub, Basel was the obvious location. At first, we could not find labs, but the predecessor organisation of BaselArea.swiss in collaboration with BLKB helped us buy and convert an old warehouse into labs. It was a good decision to settle here, and I still enjoy living in Delémont.

You are not known for idleness. What are you currently working on?

I am working on building a new set of life science ventures, both in the classic healthcare spaces and the whole consumer/industrial which I think has tremendous potential but needs different business models. And I have joined the board of an industrial biotech called Unibio that has managed to bring to commercial scale a fermentation process that converts methane gas into protein. Further, I am supporting startups through non-profit organizations such as BaselArea.swiss and its healthcare accelerator BaseLaunch.

Where do you see the potential for the start-up scene in Basel – and how will you contribute to shaping it with BaseLaunch?

Due to its scientific talent and the unrivalled management expertise spread by the large corporates, Basel ought to have a really vibrant start-up scene. It is also fortunate that Switzerland is not short of money. I think it could be more vibrant. Traditionally, the best talent has been siphoned off into the large companies, and the money and ideas have not connected as well as they might. BaseLaunch has started addressing some of these disconnects during the last two years by leveraging the knowledge of large pharma to assist the formation of very early ventures. We hope to go further with this approach in the future.

Where do you find suitable projects that are worth pursuing?

As companies grow, they inevitably narrow their focus – I do not think I have ever seen it go the other way. This results in a lot of interesting stuff getting deprioritised. I try to filter what companies do not want anymore, with the benefit that I can start with an asset that has been at least somewhat worked up and is commercially grounded. Innovation does not only come from Universities, and sometimes I think the public sector misses this point when it designs support schemes.

What objectives and values do your ventures have in common? Is there a common thread?

I like to create products that are meaningful and make a real difference to at least a part of the world – that are not “me too”. For example with Personal Chemistry, a company I co-founded in 1996, we pioneered the application of microwaves to organic chemistry synthesis, and nowadays almost every chemistry discovery lab has one or more of these instruments, and people are using them daily. It really gives me a good feeling when I see one of those instruments, even if they come from one of our competitors.

How easy is it for you to find funding for your ventures?

It is never easy, and one of the issues is that investors like to hunt in packs, which tends to make them avoid ideas that are too different – even if they like it, they know others will need to be convinced as well. Europe is too conservative regarding the funding of ideas. It is frustrating because I think that unconventional ideas can be businesses, too – as the Americans have shown time and time again.

When do you know the time has come to leave a company?

I find that when it comes to optimisation, it is time for me to move on. It is a normal process most companies go through: once a company has found its sweet spot, it increasingly becomes about optimising what it has, but it’s not for me. I like to create things. And I certainly never take the same path twice.

report Life Sciences

GETEC acquires Infrapark Baselland

20.11.2018

report Life Sciences

Van Baerle to benefit from Schweizerhalle location

13.11.2018

report Life Sciences

“Basel has all the ingredients required to host a successful company”

11.06.2018

The physician and pharmacologist Nicole Onetto is a member of the Board of Directors at the Basilea Pharmaceutica AG. In the Interview that was featured in Basilea’s annual report she talks about current challenges in oncology.

Great strides are being made in the long-term treatment of oncology patients. As an oncology expert, what do you find to be the most important advancements in the industry?

Nicole Onetto: We see spectacular results in terms of long-term survival in quite a few diseases where, less than ten years ago, there were no new treatments available. And for many forms of cancer, where previously we had only access to traditional therapies such as surgery, radiation therapy and chemotherapy, we have been able to take advantage of the new molecular understanding of cancer to personalize the treatment for each patient. This has facilitated the development and the utilization of targeted therapies associated with superior efficacy and reduced toxicity compared to traditional treatments. Finally, in the last few years, we have been able to harness the potential of the immune system to develop new therapeutic approaches which stimulate our own immune defenses to control cancer growth.

What do you see as the next major treatment improvements that may be achieved in the short and mid-term?

Definitely the further development of immune therapies for cancer patients seems more and more important. These new modalities will need to find the right place in the management of patients and will have to be used in combination with more traditional therapies. The cost-effectiveness of these innovative technologies will also need to be evaluated. Another very important topic will be minimizing toxicity of treatments and avoiding over-treatment.

How can companies succeed in clinical development?

With a more personalized approach to cancer treatment, new opportunities do exist to develop drugs associated with high efficacy in well-defined patient populations. However, drug development will always require patience, perseverance and scientific rigor. Many challenges still remain in treating cancer patients, despite the important progress that has been made. Among others issues, drug resistance is a significant hurdle and continues to be in the focus of Basilea. For patients with resistant diseases, not so long ago, the only possible approach was to change to a new drug, often a new chemotherapy. Now we have gained more insight into the mechanisms of resistance. In addition, many researchers all over the world are investigating the best ways to circumvent treatment resistance. Other important factors are collaborations between academia and the private sector such as companies like Basilea, to develop new innovative drugs to benefit patients.

How can this be supported?

The use of biomarkers to help choose the most appropriate treatment regimen and to select the patients with the highest probability of response to treatment has and will continue to have a major impact on the development of new cancer agents. Biomarker data are key to the design of development plans of new drugs and to go/no go decisions. These data are now often incorporated in the approval process and subsequent commercialization of new drugs. This approach, based on scientific evidence to select new drugs, is one of the major advances that are currently transforming the research and development process as well as clinical study methodology.

Do you see advantages for Basilea being located in Basel?

Basel has all the ingredients required to host a successful company: a vibrant research community, an international reputation of excellence in the pharma industry, a pool of talented people and a strong and stable economy. Basel is a leading life-science hub with the presence of an excellent university, the headquarters of established large pharmaceutical companies and many start-ups and innovative ventures. There are many similarities between Basel and the few well established biotechnology hubs in Europe and North America. This favorable environment has already helped Basilea build a very strong company and should continue to support its further success. So I am delighted to have been elected by Basilea’s shareholders as a member of the board and look forward to playing an active role in the Basel biotech community.

report Life Sciences

Novartis optimistic about the future

05.11.2018

report Invest in Basel region

Animal health manufacturer Zoetis makes Delémont its Swiss headquarters

22.10.2018

report Invest in Basel region

"We will not shy away from taking risks"

05.06.2018

In 2016, Roivant Sciences established their global headquarters in Basel. Roivant founder and CEO Vivek Ramaswamy talked to us about his fast growing company, his priorities for the company and about the role that Roivant aims to play in the Basel life sciences ecosystem.

BaselArea.swiss: You built a company from scratch. What are the crucial ingredients?

Vivek Ramaswamy: In biotech you need three main ingredients to build a great company: good drugs, good people, and sufficient capital. Of course, it is difficult to know which drugs will succeed or fail in advance of conducting clinical research so I started Roivant with the vision of having a broad portfolio—a company whose success would be measured by the number and the quality of the medicines that we deliver to market, but at the same time a company that would not be defined by the success or failure of any given drug. It is my belief that the long term success of the company will be driven by the quality of our people and our cultural principles which include a singular focus on value creation and a commitment to innovation throughout all aspects of our business. This is an expensive and risky industry where you have to invest heavily before you know the eventual result and I am very grateful for the backing of our investors. But at the end of the day, the money we’ve raised is not an accomplishment, it is just an ingredient.

Roivant has grown rapidly. How do you maintain an entrepreneurial spirit within the company?

Maintaining an entrepreneurial mindset is core to our model. Our company is based on the principle that smaller tends to be better which is why we did not organize Roivant as a single, centralized, command-and-control operation. Instead we scale our business through the creation of wholly- or majority-owned subsidiary companies, which we call “Vants.” We now have over 600 employees across our family of companies, and it is fair to say that preserving that initial entrepreneurial mindset is one of my main priorities going forward.

How free are the Vants in finding their own version of entrepreneurial spirit?

Think of Roivant as a parent that contributes DNA to each of our Vants. We also carefully select leaders who contribute their own DNA. Each Vant resembles Roivant heavily but also has its own unique genotype. There are common cultural principles, but there are also important distinctive features and we see that heterogeneity as a comparative advantage.

How do you cope with failure?

We are fortunate that relatively early in our history we have experienced both success and failure. We would not be doing our job if we had only a string of successes insomuch as that would indicate we are not taking sufficient risk to benefit patients. We cope with failure in three ways. First, we acknowledge it as a necessary consequence of our broader strategy. Second, we build a diverse portfolio rather than predicate the success of our business on any single drug. Finally, we own our failures openly and use them as an opportunity to learn. When our drug for Alzheimer’s disease intepirdine failed in phase III, we did not obfuscate or sugarcoat the news. But we also did not overreact and we will not shy away in the future from taking risks in similar areas of significant unmet need. Instead we will embrace the risk of failure as we make calculated decisions across all therapeutic areas.

You chose Basel for setting up your global headquarters. Which aspects did you find most convincing about the location?

It starts with the talent. We believe in diversity of talent and we recruit from both within and beyond pharma. Basel is emblematic in that sense because it brings together a very diverse talent pool from multiple countries and cultures, speaking different languages with varied experiences and educational backgrounds. That mixture makes for a warm, welcoming, and innovative environment which mirrors the culture we seek to build internally at Roivant. At the same time, the legacy of successful pharmaceutical products being developed here makes Basel a place where we wanted to plant a seed early in the life of our company. In addition to the large multinational companies for which Basel is best known there is also a strong scene of young and vibrant companies building on that tradition, and we hope to be at the center of that.

How did Roivant accommodate in Basel for the time being – were your expectations met?

Yes, except in one aspect: Basel does not seem to believe in air conditioning! Joking aside, our expectations were in many ways exceeded. I have found the community to be very welcoming, and we immediately felt at home here. We have been able to recruit talent very effectively, and we have engaged in positive dialogue with several companies in the area. We continue to source new asset opportunities in the region, and we are delighted with how this ecosystem has embraced us and allowed us to thrive. The partnerships we have forged in the region are crucial for us, not least with partners like BaselArea.swiss and its BaseLaunch accelerator program.

We are happy to have you. How do you contribute to the accelerator?

Our business model is to accelerate the launch of new companies in our family so it’s only logical that we would be part of BaseLaunch. We can use our expertise to help other companies accelerate their own launches and scale their businesses. We support BaseLaunch in the process of selecting new projects and we offer advice and mentorship. For us, it is a great way to signal our support for the local startup scene and develop our relationships with other companies in Basel. We are happy to be a part of that.

What are the prospects for the headquarters in Basel?

The short answer is we will grow further. All of the Vants will use Basel as a business hub to develop and maintain partnerships within Europe. We started out as a company focusing on shelved drugs. But we are also keen to accelerate drug development in other companies’ pipelines. Basel is a great place to do that with companies in Europe and its vicinity.

Interview: Annett Altvater

report Life Sciences

Chinese Pharma Goes Global

27.09.2018

report Invest in Basel region

BaselArea.swiss welcomes BeiGene to Basel

20.09.2018

report Life Sciences

“IP protection is crucial for business and research”

08.05.2018

The patent law and attorney-at-law firm Vossius & Partner has been an important partner for BaseLaunch since the inception of the healthcare accelerator in 2016. They advise startups and big corporations alike on IP strategy. Philipp Marchand, patent attorney in the Basel office, advocates to take IP protection seriously.

BaselArea.swiss: Vossius & Partner maintains offices in Munich, Düsseldorf, Berlin and Basel. How do you fit in the Swiss and Basel ecosystem?

Philipp Marchand: Our firm was founded in the 1960s, coming to Basel eleven years ago. We have developed extensive and profound in-house knowledge concerning all IP issues and currently represent clients of all sizes from startup companies to big pharma in Switzerland and all over the world. Basel, as one of the most exciting life science locations, is of particular interest to our firm, which has one of the largest life science groups in Europe.

That sounds a bit sophisticated for startups.

Not at all. Our expertise obtained from representing clients of all sizes is a huge advantage for the startup sector. Moreover, instead of considering IP issues in an isolated way, we endeavour to take all possible future developments of our cases into account. This includes considering aspects from other jurisdictions since, even as a startup, you have to be aware of potential worldwide implications right from the start. In addition, we work with our attorneys-at-law to not only protect an invention but also to provide advice on related aspects such as freedom-to-operate.

You are also involved in BaseLaunch. Why is that?

We entered into a partnership with BaseLaunch in order to be closer to the startup community in Basel and Switzerland. We meet with each of the selected companies and review their IP situation free of charge in order to identify potential ways to optimize protection. We are excited to be able to offer our expertise more frequently to startups because we believe that they genuinely benefit from our full service approach. If they wish, later they can also enter into a client relationship and benefit from our experience right from the start. Of course, we then have to charge for our services. However, we offer a very reasonably priced system for startup companies and universities.

Why is it worth it to spend that money?

IP protection is crucial in all technological fields and in more than one aspect: It is the only reliable means to ensure that you can make a profit in the long run in different markets worldwide. For a startup company working in life sciences, or any other technological field, the most important type of IP is without a doubt a patent right. Specifically, only a patent grants you the monopoly to keep third parties from using your invention. However, further IP topics are relevant at an early stage, too. For example, a trademark protecting the company’s name or its products that are put on the market can be invaluable. Without trademark protection a startup may be forced to change its name or the names of their products, which can incur considerable costs.

What if a researcher has no intention to commercialize his or her invention right-away?

You might think keeping your invention a secret is a good idea. But in the meantime another bright mind might have the same idea and file for patent protection. Today all jurisdictions, including the US, follow the “first to file” principle, which means that you may have missed your chance and you could even be sued for infringement by a third party for using what you thought was your own invention. We therefore strongly encourage inventors and their employers to file for IP protection as early as possible.

What do I need to protect an invention?

We like to discuss everything with our clients in person to fully understand the potential product as well as its market and its customers. Afterwards, we draft the patent claims, which means that we define the invention and the technical problem that it solves. We file the application text with a patent office, usually with the European Patent Office (EPO) as part of the European Patent Organization of which Switzerland is also a member. One year after the first filing, we can prepare a subsequent application, which covers more than 150 states worldwide. The whole process until an application is granted can take more than five years.

Is there a difference in the importance of IP protection in the life sciences sector compared to other fields?

The biggest difference is the longer product life cycle for pharmaceutical products and the stricter regulations compared to, say, short-lived computer hardware. Also, due to the long product life cycles and general development costs in this sector, patent protection is the only way to ensure that the owner of the patent right benefits first from the invention. With a particular focus on the pharma sector, one should also mention the need to build-up an IP portfolio which not only protects, for example, a drug but also the process of making that drug, different formulations, dosage and treatment regimens and so on. At the same time, you should consider using additional IP rights such as trademarks. Take Bayer who invented Aspirin. The patent for the active ingredient acetylsalicylic acid has long expired, which means it may be widely produced and sold. However, the trademark still ensures that people specifically ask for Aspirin.

Are there any reasons to advise against filing for patent?

Yes, of course. There are situations where it may make sense to wait with filing a patent application until sufficient data and support has been collected. For example, it may not always be advisable to file a patent for a research platform to protect a screening method for active compounds. This is because patent applications are published 18 months after filing, meaning that everyone has access to the method. In this scenario, it may make sense to wait for the first molecule that emerges from your platform and file for product protection. However, such strategic aspects should always be discussed on a case-by-case basis.

Which misconceptions concerning IP do you sometimes encounter?

Most researchers are aware of IP protection but the execution could be better. One misconception includes the so-called grace period. There is no grace period in European patent law or in most other jurisdictions with the exception of the US, Japan and Canada. After you publicly disclose your own invention by writing or talking about it, you may not be able to obtain patent rights for your invention.

What may researchers reveal to their peer collaborators?

An invention is new if it does not form part of the state of the art, meaning it is not publicly known. Hence every discussion with a colleague or presentation of a poster at a conference prior to filing a patent application can potentially destroy the novelty. You may think that no one will find out. However, when it comes to money, third parties will leave no stone unturned. Of course, we are aware of the conflict between patent applications and the need to publish academic papers or give presentations. If you are unsure what to do: It is always better to come talk to us before a publication, a poster presentation or any other public disclosure, even on short notice.

 

About
Philipp Marchand heads the Basel office of Vossius & Partner. After graduating in biochemistry at the University in Frankfurt am Main and his PhD studies at a CNRS institute in Paris, he started his career as a patent attorney trainee with Vossius & Partner in Munich. After the bar examination, he transferred to Basel at the beginning of 2017. Recently, he started to pursue a doctorate in law at the University of Basel. Vossius & Partner is a leading patent law firm offering a full-service concept with legal competence from patent attorneys in every technological sector and attorneys-at-law qualified to practice not only in Europe and Switzerland, but also in the United States, Japan, Taiwan and Korea. The firm employs 55 patent attorneys and 20 attorneys–at-law in their offices in Munich, Düsseldorf, Berlin and Basel.

report

BaseLaunch’s second round – 10 projects enter Phase I

18.09.2018

report Life Sciences

Clariant calls for higher-value specialty chemicals

18.09.2018

report Life Sciences

“I enjoy thinking about seemingly unsolvable problems”

13.03.2018

Andreas Plückthun continues his research where others stop: 40 employees work in his laboratory on protein engineering. Their results form the basis for three biotech companies: Morphosys in Munich, as well as Molecular Partners and G7 Therapeutics (today Heptares Zurich) in Schlieren. At the Antibody Congress 2017 in Basel, Andreas Plückthun told us why he remains true to his research.

Mr. Plückthun, you co-founded three biotech companies in three decades. How did this come about?

There was always this curiosity in the beginning to discover something – but never the wish to found a company. After we produced artificial antibodies and learned how to mimic the immune system, we established the company Morphosys. Then the next question arose: can we do this with other protein molecules and solve new problems? Out of this emerged Designed Ankyrin Repeated Proteins (DARPins) and a second company, Molecular Partners in Schlieren. The next challenge was then to stabilize receptors by means of protein engineering in order to develop better drugs for these points of attack. Based on this research, we founded the third company, G7 Therapeutics.

Who pushed ahead with the spin-offs each time?

For the first company, it was my research colleagues. I was the more sceptical of us three at the time. The other two companies were traditional spin-offs of my doctoral and postdoctoral students.

How are the companies doing today?

Morphosys now has 430 employees and recently celebrated its 25th anniversary. We also received the first FDA approval for an antibody that is now available on the market. This is one of the few companies that is still doing exactly what we once wrote in the business plan, and successfully too. Molecular Partners has 130 employees, several Phase 2 and 3 studies, and, like Morphosys, is listed on the stock exchange. G7 Therapeutics was sold to the British company Heptares, which in turn belongs to the Japanese company Sosei. In short: all companies are doing well. I don’t consider founding a company to be a particular achievement. The achievement is more that the companies are flourishing and bringing drugs to the market.

What changes have you noticed over the decades when it comes to founding a company?

The climate has changed completely. It was totally against the grain in Europe 25 years ago to found a biotech company. That’s why people went to California. At a symposium in America, I was once introduced as a researcher and a founder with the words; “He’s like us.” It was very common there for a long time to be both a researcher and an entrepreneur. That scepticism has since disappeared here, and founding a company is now judged positively. A venture capital scene has also developed since then. To be fair, I have to say that it helps investors if you’ve already successfully founded a company. The first deal is always the hardest.

You seem to be quite successful when it comes to founding companies. Did it ever tempt you to move to one of your companies?

It was never a question for me to leave the university. It’s an incredible privilege to be paid by the state to do crazy things. I always wanted to think about the next challenge at the university. Not having to account for quarterly profits is the only way forward in this context. In a company that conducts research with money from investors, you simply cannot undertake the type of risky and long-term projects that interest me. But I can say that thanks to the companies that are based on my research, I have repaid my dividends and created many jobs.

So you’ll continue to devote yourself to basic research. Can this be steered towards commercialization at all?

We’ve always wanted to solve a problem that seemed important enough to us. At some point in the research the question arises of how to use the results, what you can make of them. If we hadn’t commercialized the results, the problems would have simply stopped at an interesting point. We would have stopped halfway along. This is comparable to a coming up with blueprint for a computer and then not building it. By founding the companies, we could ensure that the projects would continue.

Is there any collaboration with industry within the scope of your research?

Direct collaboration between the pharmaceutical industry and our laboratory has never worked properly. Expectations and time horizons are very different. We develop new ideas and concepts that are often not exactly in keeping with large-scale pharmaceutical research. I don’t think anyone will feel offended when I say that the pharmaceutical industry is very conservative. We do have many contacts but hardly any collaboration. That being said, our spin-offs work very well with the pharmaceutical industry.

Which topics would you like to focus on next?

We are researching artificial viruses that cannot reproduce. The viruses should produce proteins directly in the body that are needed as therapeutic agents. This is so far away from practical implementation that such a project is only possible at a university. But I am absolutely convinced that it would have enormous significance if it worked. I couldn’t sit still if we didn’t at least try. We are once again trying to solve a problem in my laboratory that most people in the field would consider impossible to solve. That’s what makes me get up in the morning. I want to show how it works.

Learn more about Andreas Plückthun between basic research and biotech entrepreneurship at our event on 24 April 2018.

About
Andreas Plückthun (*1956) is a scientist whose research is focused on the field of protein engineering. He is the director of the department of biochemistry at the University of Zurich. Andreas Plückthun was appointed to the faculty of the University of Zurich as a Full Professor of biochemistry in 1993. Plückthun was group leader at the Max Planck Institute of Biochemistry , Germany (1985-1993). He was elected to the European Molecular Biology Organization (EMBO) in 1992, and named a member of the German National Academy of Science (Leopoldina) in 2003. He is cofounder of the biotechnology companies Morphosys (Martinsried, Germany), Molecular Partners AG (Zürich-Schlieren, Switzerland) and G7 Therapeutics (Zürich-Schlieren, Switzerland).

Interview: Annett Altvater and Stephan Emmerth, BaselArea.swiss

report Invest in Basel region

At a glance: The Life Sciences Cluster Basel Region

17.09.2018

report Invest in Basel region

ETH investing 200 million in Basel campus

07.09.2018

report

Meet the BaseLaunch Startups

11.03.2018

Six of the BaseLaunch startups recently started Phase II. They received either grants up to 250,000 Swiss francs or gained free of charge access to BaseLaunch laboratory and office space at the Switzerland Innovation Park Basel Area. Hear what the startups, the BaseLaunch team and selection committee members experienced in the first year. Find out more about what makes BaseLaunch unique.

The BaseLaunch accelerator is now open for applications for the second cycle. Entrepreneurs with a healthcare based project or a game-changing innovation in diagnostics, medtech or related field at the pre-seed or seed funding stage are invited to submit their applications to the program.

Following the application deadline on 14 May, promising projects will be admitted to the accelerator program for a period of 15 months. In phase I, the startups will benefit from the support of industry experts, office- and laboratory space free of charge and access to healthcare partners. After three months, they will be invited to present their idea to the selection committee. They will determine which promising startups will proceed to Phase II that runs for one year.

BaseLaunch is backed by five industry leaders — Johnson & Johnson Innovation, Novartis Venture Fund, Pfizer, Roche and Roivant Sciences. Other public and private partners such as KPMG and Vossius & Partner also support the initiative.

report Life Sciences

Novo Holdings invests in Polyphor

06.09.2018

report Life Sciences

Basel and Toyama to cooperate on biotech

27.08.2018

report Life Sciences

"You should always have something crazy cooking on the back burner"

03.10.2017

When Jennifer Doudna gave her keynote at Basel Life in September, the auditorium in the Congress Center was packed. Susan Gasser, Professor of Molecular Biology at the University of Basel introduced Doudna as groundbreaking and extremely innovative. The Professor of Chemistry and of Molecular and Cell Biology at the University of California, Berkeley was on top of Gassers wish list for the Basel Life. The leading figure of what is known as the CRISPR revolution among scientists sat down with BaselArea.swiss during her stay in Basel to talk about her lab, flexible career paths and what makes a great researcher.

In your keynote you stated that you always did a lot of basic research. What changed for you and your lab after you published the CRISPR findings?

We are still doing deep dives into CRISPR technology. A lot of our work is about discovering new systems and looking at RNA targeting and integration. These things do not necessarily have to do with gene editing, but are our primal motivation. But there were quite a few changes. We started doing a lot more applied work. That led to all sorts of interesting collaborations with people that I would probably never had the chance to interact with in the past. It has been a great opportunity to expand both deeper and broader.

How do you manage to direct your students and postdocs in your growing lab?

I hire really good people that can focus on both innovative initiatives mixed with projects where a clearer outcome can be forecasted. I give them some guidance and then I cut them loose. We also build teams in the lab which works really effectively. I do not always get it right, but when I do, amazing science happens.

You live in an area where entrepreneurship seems to be some kind of lifestyle. What is your view on the environment in Europe for both doing research and creating companies compared to the benchmark California?

There are some interesting – probably cultural – differences in the way people approach science. At Berkeley, a lot of our students are planning to go into academia. And a lot of students in California not only want to go into industry, but want to start their own company or join a startup. From talking to my Swiss colleagues, it sounds like many students in Switzerland are uncomfortable with that. They want to go to a large company and get a nice salary. Nothing wrong with that. Still, I think that it is good to encourage students to take a risk and to try something that is outside of their comfort zone.

How does that work out in Berkeley?

Two of my students started companies with me directly based on their work in the lab. One company creates new technologies that will be useful therapeutically or in agriculture. In the other case, we are figuring out how to deliver gene editing to the brain. Both students became CEOs and were able to do all the steps it takes to build their company, deal with the legal stuff and funding, conceptualize the business plan and the science. They had to hire people, build a team, and make deals. I always tell those students, I could never do their job.

How do you motivate students to take that step anyway?

I think one of the reasons that we have a lot of entrepreneurship in the bay area is because Silicon Valley is around the corner. That kind of mindset permeates everything. My kid sees young entrepreneurs who are not that much older than a teenager building the next robotics and AI companies. Granted, there is lots of failure for every single success. But teenagers see a successful person and feel motivated to give it a shot.

How can a culture like that be created?

You cannot replicate Silicon Valley culture. But I think you can create a culture that values risk taking and that validates people who do things that are not traditional. If you try something and it does not work out you should not be penalized. Instead, you should be able to go back and get the job at the big corporation. If we encourage our students to see all those options from academia to corporation and startup, they realize that they do not necessarily have to commit themselves to one path for their entire career.

Were you ever tempted to switch sides?

I toyed with it. Back in 2009, I left my job at Berkeley and joined Genentech as a Vice President of basic research. I only lasted a couple of months.

Why was that?

From the outside, it seemed like an exciting way to take my research in a much more applied direction. When I was inside I realized I was not playing to my own strengths. Instead, I realized what I am good at doing and what I really like. It all boiled down to creative, untethered science. I love working with young people and I like creating an environment where they can do interesting work. Not that I could not have done that with Genentech, but it was very different. The process was super painful, but also valuable. I returned to Berkeley and decided to go with the reason why I am in academia: crazy, creative projects that might not be clinically relevant but are interesting science. That was when I decided to expand the work on CRISPR. Had I not made the foray to Genentech and then back to Berkeley, I might not have done any of the CRISPR work.

One topic you are dealing with is the unsolved patent struggle about CRISPR Cas9. Does this effect your work?

I try to look at it very pragmatically. Because ultimately I am an educator. You could say this is my own education. I have learned a huge amount about the patent and legal process, some of it unpleasant. Someday I will write a book about that.

Another jury might be more distinctive on your achievements: You are a hot candidate for the Nobel Prize. How does that make you feel?

I try not to think about it too much. Yet, I feel very humbled. It makes me take a step back and ask myself: What is the purpose of prizes like that? I think they highlight science, the advances that are made and how these might influence people’s lives positively. I did not chose this job to win prizes, but because I really love science.

Is that enthusiasm for science what makes a great researcher – or is there a magic formula?

I think it is a combination of willingness to try new things coupled with a willingness to listen to people. I have seen these extremes both in myself and in my lab. I have real maverick students with creative ideas. But they can never follow a protocol because they are sure they will do better. This often does not lead to good science. The flip is true as well: If you always just follow protocols and never take a step out of the procedures you also do not create the most interesting science. We usually set up one line of experiments that are following a path and where we will surely get some data that are of interest for us. The second project is something that is of interest to the student. This mixture often leads to the best science.Let’s face it: You do not get rich in academic science. The joy in science is the freedom of making discoveries, of finding things out. I tell students: ‘If you stay in academic science, play with that.’ You should always have something a bit crazy cooking on the back burner. That is what makes it fun.

Interview: Alethia de León and Annett Altvater, BaselArea.swiss

report Invest in Basel region

Novartis creates up to 450 new jobs

27.08.2018

report Innovation

Researchers discover new target for cancer treatment

23.08.2018

report BaselArea.swiss

13 startup projects qualify for the first phase of BaseLaunch

18.09.2017

The BaseLaunch Healthcare Accelerator program from BaselArea.swiss started on September 14. Over 100 applications were received from more than 30 countries, and the selection committee has selected 13 projects to go on to Phase I. Now, the project teams will work with industry experts to further develop their business case over the next three months.

More than 100 projects from over 30 countries were submitted to the BaseLaunch accelerator program from BaselArea.swiss. The submitted projects ranged from therapeutics and diagnostics to digital healthcare and medtech. Instead of 10 as originally planned, the selection committee chose 13 promising projects, which will now proceed to Phase I. "The innovation potential of the project proposals was impressive," says BaseLaunch Selection Committee Chairwoman Trudi Haemmerli, CEO of PerioC Ltd and Managing Director of TruStep Consulting GmbH. “We look forward to seeing how the chosen project teams fine-tune their business cases during Phase I.”

According to Stephan Emmerth, the BaselArea.swiss Business Development Manager for BaseLaunch, the selected projects cover a wide range of objectives: from new approaches for the treatment of diseases such as Alzheimer's or novel immunotherapies to innovative drug delivery methods and next-generation gene therapies for cancer treatment. Other projects focus on new diagnostic procedures for finding cancer biomarkers or revolutionizing the detection of neurological diseases by deploying digital measurement methods.

The development stages of the projects were just as varied. Some projects were submitted by entrepreneurs wishing to establish a company with the support of BaseLaunch. Other projects came from existing startups that had already successfully managed the initial rounds of financing and wanted to further develop the company with the help of BaseLaunch. The founders of these companies and members of project teams also had different professional career histories. Some of the applicants selected for Phase I have many years of R&D experience in the industry; others come from a university background.

"We have chosen the most promising projects. Additionally, selected projects should benefit as much as possible from BaseLaunch and its regional life sciences ecosystem," says Alethia de León, Managing Director of BaseLaunch. “We paid particular attention to a sound scientific and technical foundation, a high level of innovation and the entrepreneurial potential of the founding team.” Alethia also commented on the productive and collaborative selection process with representatives from healthcare partners that included Johnson & Johnson Innovation, Novartis Venture Fund, Pfizer and Roche. "Our discussions during the selection process were very constructive," she says.

The 13 selected startups will have three months from September 14 to develop their business ideas. They will be supported by the BaseLaunch team as well as a number of experienced entrepreneurs and consultants. In this first phase, up to CHF 10,000 will be available for each of the projects. The selection committee will then select three of the Phase I projects to progress to Phase II. This phase lasts for 12 months, with each project receiving funding of up to CHF 250,000. The selected project teams in Phase II will also have access to the BaseLaunch Lab in the Switzerland Innovation Park Basel Area, where they will be expected to achieve important research milestones and further develop their business cases.


Overview of the selected projects:

ABBA Therapeutics develops therapeutic antibodies against novel targets for cancer immunotherapy.

The β-catenin project aims to develop novel therapeutics for the treatment of colorectal, lung, liver, breast, brain and ovarian cancers by removing pathological proteins from the human body.

CellSpring analyzes human cells grown in special 3-Dimensional environments to develop new tools for diagnosing early-stage cancer.

Eyemove strives to detect early-stage neurological diseases through eye-tracking.

Polyneuron Pharmaceuticals is committed to the development of a promising new drug class to treat autoimmune disorders.

The SERI project develops new medicines to treat anxiety and stress related disorders by modulating the activity of cannabinoid molecules in the human body.

SunRegen develops novel drugs for neurodegenerative diseases.

T3 Pharma develops the next generation bacterial cancer therapy.

The mission of T-CURX is to exploit its unique ‘UltraModularCAR’ platform to provide best-in-class immunotherapy.

The mission of TEPTHERA is to offer individualized therapeutic cancer vaccines.

TheraNASH develops precision medicine for fatty liver disease (NASH) - a rising cause of liver cancer world-wide.

VERSAMEB is a regenerative medicine research and development company.

One biotech in stealth mode is developing novel Immuno-Oncology drugs.

report Precision Medicine

Aptevo deploys Genedata platform

21.08.2018

report Production Technologies

3D printing: rapidly developing technology in life sciences

14.08.2018

report BaselArea.swiss

Investing in strengths – Swiss leadership in life sciences

15.05.2017

How can Switzerland and the Basel region maintain their international leadership role in life sciences? As part of the Biotech and Digitization Day, Federal Councillor Johann Schneider-Ammann visited the Basel region to discuss current trends and challenges with a high-ranking delegation from politics, business, research and start-ups.

The importance of life sciences for the Swiss economy is enormous. Last year, the sector was responsible for 45% of total Swiss exports. Similarly, the majority of new relocations are active in the healthcare sector. Switzerland is said to a leading life sciences location in the world with the Basel region as its engine.

It is against this backdrop that Federal Councillor Johann Schneider-Ammann, head of the Federal Department of Economic Affairs, Education and Research, was invited by BaselArea.swiss and digitalswitzerland to visit the Basel region as part of the Biotech and Digitization Day to discuss current trends and challenges in life sciences with a high-ranking delegation from politics, business and research.

The event was held at Actelion Pharmaceuticals and the Switzerland Innovation Park Basel Area in Allschwil in the canton of Basel-Landschaft. Federal Councillor Schneider-Ammann emphasised the significance of the region and life sciences industry: “The two Basels have a high density of innovation and successful companies, research institutes and universities. This fills me with pride and confidence. Pharmaceuticals and chemistry are rightly regarded as the drivers of innovation.” But Switzerland cannot rest on its laurels if it is to remain successful in the future; business and politics, science and society must all use the digital transformation as an opportunity, he insisted.

The event was organised by BaselArea.swiss, which promotes innovation and business development in the northwest Switzerland cantons of Basel-Stadt, Basel-Landschaft and Jura, and digitalswitzerland, the joint initiative of business, the public sector and science, whose aim is to establish Switzerland as a leading digital innovation location in the world.

Federal Councillor Schneider-Ammann is currently visiting Switzerland’s leading regions to get an impression of the effects of digitalisation on different business sectors and to talk about promising future concepts.

Supporting biotech start-ups

Life sciences are regarded as a cutting-edge sector with considerable growth potential. But competition among the different locations is becoming more aggressive as other regions in the world are investing heavily to promote their location and attract large companies. A central question of today’s event was: How can Switzerland and the Basel region maintain its leadership role in the face of international competition?

Given its major economic importance in life sciences and when measured against other leading locations worldwide, Switzerland has comparatively few start-ups in this industrial sector. With the launch of BaseLaunch, the new accelerator for healthcare start-ups, BaselArea.swiss and the Kickstart Accelerator from digitalswitzerland have taken a first step to changing this. However, in addition to the lack of seed capital in the early phase of a company’s development, there is also a lack of access to the large capital that an established start-up requires in order to expand. Said Domenico Scala, president of BaselArea.swiss and a member of the steering committee of digitalswitzerland: “We have to invest in our strengths. This is why we need initiatives like Swiss Future Fund, which aims to enable institutional investors to finance innovative start-ups.”

The importance of an innovative start-up scene for Switzerland as a centre of life sciences was also a topic for the roundtable discussion that Federal Councillor Schneider-Ammann held with Severin Schwan, CEO of the Roche Group, Jean-Paul Clozel, CEO of Actelion Pharmaceuticals, Andrea Schenker-Wicki, rector of the University of Basel, and others.

Digitalisation as a driver of innovation

The second topic at the Biotech and Digitization Day was digitalisation in life sciences. According to Thomas Weber, a member of the government of the canton of Basel-Landschaft, this is an important driver of innovation for the entire industry and is crucial to strengthening Switzerland as a centre of research.

In his speech, Federal Councillor Schneider-Ammann focused on three aspects: first, the creation of a new and courageous pioneer culture in which entrepreneurship is encouraged and rewarded for those who dare to try something different. Second, more momentum for start-ups by realising an initiative for a privately financed start-up fund. And third, shaping the role of the state as a facilitator that opens up spaces rather than putting up hurdles or bans.

In the public discussion round, in which representatives from research and industry as well as entrepreneurs participated, it became clear that digitalisation is changing life sciences. Everyone agreed that Switzerland has the best conditions to play a leading role in this transformation process. The basis for this are its powerful and globally actively pharmaceutical companies, its world-renowned universities and an innovation-friendly ecosystem with digitally driven start-ups from the healthcare and life sciences fields. 

digitalswitzerland wants to promote this, too. According to Nicolas Bürer, CEO of digitalswitzerland, healthcare and life sciences are key industries to making Switzerland the leading digital innovation location.

A further contribution can be made by the DayOne, the innovation hub for precision medicine. Launched by BaselArea.swiss in close cooperation with the canton of Basel-Stadt, it brings together on a regular basis a growing community of more than 500 experts and innovators in an effort to share ideas and advance projects.

report Life Sciences

Consumer Health drives growth at Lonza

27.07.2018

report Invest in Basel region

Life sciences boost Basel tourism

20.07.2018

report BaselArea.swiss

“I see a very innovation-friendly climate in Basel”

12.04.2017

It all began with research resources that were a quarter of a century old. Simon Ittig and his colleagues at the Biozentrum of the University of Basel turned these into a research project – and eventually a start-up. T3 Pharmaceuticals develops new therapies to treat solid tumours.

How did T3 Pharma come about?

Simon Ittig: I completed my doctorate at the Biozentum in Professor Guy Cornelis’ group, which dealt primarily with a secretion system of bacteria. Bacteria require these needles to inject proteins into cells and establish their pathogenesis. My doctoral supervisor discovered this mechanism 25 years ago and had researched it ever since. When I completed my doctorate in 2012 and Professor Cornelis retired, I was able to take over many resources such as bacterial strains and study protocols. As a postdoc in another group at the Biozentrum, I dealt with the question of how proteins can be transported rapidly into cells. This brought me back to my collection of bacterial strains, as they are by nature exactly the same. In a short time, I succeeded in showing that such a protein transport does in fact work – and rapidly, efficiently and synchronously. This potential enthralled my research colleagues and me.

What precisely can this technology be used for?

If you have bacteria that transport specific, for example human, proteins into cells, then you can stimulate these cells as you like. It has long been known that bacteria migrate to solid tumours. Accordingly, we focused on the field of solid tumour oncology and could achieve impressive results in a surprisingly short amount of time. We now have bacteria that grow specifically in a tumour over an extended period of time. We can also now program these in such a way that they produce certain active ingredients and pass them into the cells – precisely to where these substances can take effect. Our technology is very stable.

Was it obvious to you that you could go ahead and start a company with this idea?

Yes, this idea came relatively early. We received the first financial support from CTI, the Cancer League and smaller foundations when we were still just academic researchers. It was already clear then that we wanted to become self-employed with our protein transport technology. Founding our own company was even one of the conditions for further research funding from CTI. The Biozentrum supported us in many ways when we were spinning off. As before, the patents belong to the university, but we have an exclusive global license.

How did you finance T3 Pharma?

In the beginning and also subsequently we received substantial amounts of research funding. However, the funds are generally restricted to salaries and materials. Foundations mainly want to finance the actual research work. At some point you reach a limit, which is why we began to actively look for investors for our company.

With great success. What played a decisive role?

First of all, you have to have the right business idea. Second, you need a good amount of mutual trust. The whole set up should be able to accompany the company for several years. If every couple of years you need a few months to secure the next financing round, then this ties up too many resources, creates a lot of uncertainty and distracts from your research activities. For this reason, we looked – and found – investors who had the financial opportunities and necessary understanding, who believe in us and are ready to go the distance with us.

So were you in a privileged position where you could also turn investments down?

Maybe. I’m convinced that you shouldn’t accept every offer if you don’t have to. We carefully examine the conditions connected to the financing and also want to get a sense of the investors’ intentions. It’s also recommended that you keep your options open. If you become content with something too early, it can become very expensive later on.

You have received over 2 million francs from foundations. Is this unusually large for a start-up?

The effort for such financing is of course also very high, especially at the beginning when you can’t yet show proof of your achievements or have yet to receive any research grants. It’s crucial to bring experienced people on board at an early stage. This gives the foundations the necessary certainty when it comes to the project’s feasibility. It’s also important to appreciate smaller amounts. I’m also very grateful that I could learn a lot about the art of writing applications from an experienced and successful scientist, Professor Nigg. With Prof Nigg from the Biozentrum and Prof Christofori from the Department of Biomedicine, we had formed a professional and interdisciplinary consortium from early on. Without these two experienced professors our company wouldn’t exist in its current form.

How high then was the success rate?

I would estimate that half of our requests have been met with a positive result until now.

You’ve come far with this foundation funding, but you’re taking the next steps with the support of private investors. Is this better than turning to venture capital companies?

We of course looked at both alternatives. Private and institutional investors are not mutually exclusive. But we prefer private people because they are generally alone or in small committees and can decide quickly if they want to invest or not. A second point: it’s also important to me personally that we develop an idea together of the next few years and work towards these goals. The interactions, the shared vision and the sense of similar values bring a great amount of pleasure and confidence. It just has to be ‘right’, professional and personal.

How do you go about finding private investors?

Actually, this only goes via a good network and our experienced consultants. In contrast to venture capital firms, private investors tend to remain discretely in the background. It’s therefore important to think early on about the positioning of your own company, the team and its technology. A well-planned communication also helps. Once the ideas are known, it’s easier to get in touch with the right people. If you win someone over in a discussion, there’s a good chance that a private investor will get involved.

What are your next steps?

The financing of T3 Pharm is secured for the time being. We can therefore concentrate on our research and then validate our technology and prepare for preclinical development. As CEO, I’m working outside of the laboratory for the time being while my four colleagues are focussing fully on the research.

What is your long-term vision?

We want to bring our technology for use in patients. This is the major driver in our day-to-day work. How and when we will achieve this goal, I still can’t say today. And also whether or not T3 Pharma will still be an independent company. Who knows what the future holds. We’re therefore open and focused first and foremost on our research.

How do you see the local ecosystem for young entrepreneurs?

We have a good connection to the university and appreciate the open doors. If you trust people and approach them, you receive a lot of support. I see a very innovation-friendly climate in Basel. Of course the large life science cluster creates an incredibly positive environment for start-ups like us. And how BaselArea.swiss promotes innovation also helps in an uncomplicated way when it comes to meeting the right people.

And yet when it comes to start-ups, Basel lags behind other places. What needs to be done?

Nothing works without self-initiative and perseverance. If you have both, you’ll find the best conditions here in Basel and Switzerland. If I had one wish, it would be to more strongly institutionalise the informal exchange at the university. Earlier input from experienced professionals on a start-up idea could help young researchers gather the self-confidence for the next steps and be more successful in presenting their own ideas to a committee. Rejections can be quite discouraging sometimes.

Are there so many ideas that get buried before they’re even given a chance?

Yes, there are, and I find it a real pity. It’s not a matter of course for many people to stand up in front of others and say “I want this, I can do this, and I’ll do it”. Only a few young researchers trust themselves to overcome such a big hurdle and also pursue a project in the face of obstacles. Many talented young scientists remain on the academic track and continue to publish up until the train leaves for a start-up. It would help if they could discuss their ideas informally, without having to shout it from the rooftops. I’m convinced that there would be even more innovative start-ups. Once this hurdle is overcome, you get an unbelievable amount of support even from professors in other fields encouraging you to continue. This is what happened to me.

And was does your doctoral supervisor say about T3?

He’s extremely happy for us. Guy Cornelis also provides us with scientific advice and helps us where he can. The relationship has also since changed and has become very friendly.

About:

Dr Simon Ittig studied biochemistry and biotechnology at the universities of Bern, Vienna and Strasbourg and graduated from the Biozentrum of the University of Basel in microbiology. The start-up T3 Pharmaceuticals grew out of the research project Type 3 Technologies – Bacteria as a versatile tool for protein delivery.

report Invest in Basel region

Two of the world’s most valuable companies come from Basel

04.07.2018

report BaselArea.swiss

NBE Therapeutics secures new investor

02.07.2018

report BaselArea.swiss

BaseLaunch can take full advantage of the potential of Basel's life sciences ecosystem

15.03.2017

The new accelerator for healthcare ventures, BaseLaunch, wants to link the best start-ups to the Basel region – and in doing so, provide impulses for major players. The project will consistently focus on quality and the concentrated know-how in the region, says Managing Director Alethia de Léon.

Financial support through BaseLaunch can be as high as CHF 10’000 per project. Startups accepted for the second phase will receive grants up to CHF 250’000. Other regions have tens of millions at their disposal. Are you even competitive?

Highly generous programmes in the EU and around the world have shown that it is not enough to distribute a lot of money with open hands. Rather, we have to make sure that the investments go to the most promising projects, namely those with a suitable team likely to effect a successful development from an idea to the market. In short: quality – and not quantity – has topmost priority for BaseLaunch.

What makes BaseLaunch unique?

BaseLaunch focuses on the entrepreneurs. Startups accepted for the programme will receive non-repayable funding, instead of equity financing that has to be repaid. Additionally, Basel is a life sciences ecosystem with one of the highest densities of biopharmaceutical enterprises globally and has an incredible pool of talents and specialists. Our healthcare partners, Pfizer, Johnson & Johnson Innovation, and Novartis Venture Fund offer direct access to valuable industry knowledge and experience relevant to develop and boost transformative healthcare solutions. Together, this allows us to give market-relevant advice suited to the needs of every single start-up company.

What types of projects is BaseLaunch especially suitable for?

BaseLaunch is open to all projects in the healthcare field. Geographically, our focus is on Switzerland and Europe. Our laboratories in Switzerland Innovation Park Basel Area specialise on therapeutics, but innovative concepts in the diagnostic and medtech fields are also welcome to participate in the accelerator.

Operationally, the accelerator is managed by BaselArea.swiss but operates under a different name. Why such a setup?

BaseLaunch seeks to find the most innovative and promising healthcare start-ups, support them and embed them into the local healthcare ecosystem. This makes BaseLaunch an important part of the core activity of BaselArea.swiss. Due to the different financing and decision-making structures and in line with a focussed market presence and a particular target groups, it made sense to launch the project under a different name.

Is it then the role of the state to invest in start-ups?

No public funds are invested in the projects. The cantons are financing the operational running of BaseLaunch. But what goes directly into the start-ups comes from the private sector. With BaseLaunch, BaselArea.swiss is thus providing the right framework conditions as a neutral partner of industry fostering the emergence of new companies with suitable programmes. And don’t forget that other places are very much on the offensive with public resources. It’s important not to fall behind. We have to remain in the fiercely competitive bid to be an attractive location – without, however, distorting our liberal economic order.

Why do we need more start-ups?

Start-ups are needed first and foremost to create added value from knowledge. If we invest billions into academic research, this also needs corresponding structures to make innovations out of inventions. It’s been shown that start-ups are taking on a more and more decisive role in this respect. In addition, start-ups have the potential to grow rapidly when successful and create a great number of high-quality jobs. Actelion, which began as a start-up, is the best example of this. While BaseLaunch succeeds in working with the best start-up projects, this also generates impulses for established companies and the ecosystem as a whole. BaseLaunch thus contributes toward raising the region’s attractiveness as Europe’s leading life sciences hub.

Is the Basel region even interesting for start-ups? Isn’t the cost of living likely to frighten away entrepreneurs?

Silicon Valley, London or Boston is not more affordable. The unique advantage of Basel’s life sciences ecosystem – its concentration of talent, pharmaceutical decision-makers and capital, which are unrivalled in Europe – ultimately tip the balance in our favour in the eyes of company founders. We have seen that the Basel region scores well in these critical areas – which are “must haves” especially for young companies – that, all things considered, the overall package is more than enough. This can be seen in the steady increase in companies being founded from outside the region in recent years.

For more information about the project, please visit www.baselaunch.ch

 

About Alethia de Léon

Born in Mexico, Alethia de Léon studied at Massachusetts Institute of Technology and Harvard Business School. After working in healthcare investment and product development, she was Global Head of Search and Evaluation, Business Development and Licensing for the Neuroscience Business at Novartis until 2015. In addition to managing BaseLaunch, Alethia de Léon is CEO and founder of the start-up Senes Science GmbH.

 

report Invest in Basel region

Speedboat Meets Supertanker

02.07.2018

report Invest in Basel region

Where the life sciences are concentrated

26.06.2018

report BaselArea.swiss

Startup accelerator BaseLaunch aims to attract promising healthcare ventures to Basel, Eur...

22.02.2017

BaseLaunch, Switzerland’s new accelerator for healthcare startups, provides handpicked ventures with access to the Basel region’s life sciences ecosystem. BaseLaunch has been initiated and is operated by BaselArea.swiss, supported by Novartis Venture Fund, Johnson & Johnson Innovation, Pfizer, and partners with digitalswitzerland’s Kickstart Accelerator.

BaselArea.swiss, the office for promoting innovation and inward investment for the northwest cantons of Basel-Stadt, Basel-Landschaft and Jura, today announced the launch of Switzerland’s new healthcare startup accelerator BaseLaunch. Harnessing the Basel region’s unique position as a global life sciences hub, as well as its rising popularity among investors and a program tailored to healthcare entrepreneurs, BaseLaunch is looking to attract the next generation of breakthrough companies.

“A healthy and well-endorsed startup scene is necessary to bolster and further expand the elite position of Switzerland’s exceptional life sciences economy,” stated Domenico Scala, President of BaselArea.swiss. “Switzerland has much catching-up to do in this regard and BaseLaunch is a strategic initiative to fill this gap.” “The expertise of BaselArea.swiss in connecting innovators and supporting entrepreneurs enables BaseLaunch to be extremely focused on the unmet needs of healthcare startups while at the same time contributing to the excellent Swiss innovation landscape, particularly in the life sciences arena,” added Dr. Christof Klöpper, CEO of BaselArea.swiss. As the designated healthcare vertical of digitalswitzerland’s Kickstart Accelerator and a partner of established public and private bodies, BaseLaunch is closely aligned with key national and regional initiatives. BaseLaunch has already garnered support from global biopharmaceutical companies and innovation champions Novartis Venture Fund, Johnson & Johnson Innovation and Pfizer. These healthcare partners are engaging with BaseLaunch to find and support transformational innovations that solve unmet medical needs. “BaseLaunch aims to support the best healthcare innovators and offers them fast access to founder-friendly venture grants, insights, industry access and state-of-the-art infrastructure. We want to enable and individually guide them to become fully embedded into the life sciences value chain,” explained Alethia de Léon, Managing Director of BaseLaunch.

The program consists of two phases, which extend over a total of 15 months. During the first phase, lasting three months, entrepreneurs work closely with the BaseLaunch Team as well as a network of entrepreneurs-in-residence, advisors and consultants to further develop their business cases. Financial support through BaseLaunch can be as high as CHF 10,000 per project. Up to three startups accepted for the second phase will receive the opportunity to secure a one-year grant of up to CHF 250,000 to generate data and reach business plan milestones in the labs at the Switzerland Innovation Park Basel Area.

BaseLaunch accepts applications for the inaugural acceleration program cycle until June 30, 2017. Additional program cycles will start in late 2018 and 2019. A Selection Committee of industry experts will handpick the ventures invited for each program cycle.

 

Comments from BaseLaunch healthcare partners

Richard Mason, Head of the Johnson & Johnson London Innovation Centre:
“This program offers grants and lab space to selected startups - with no strings attached - illustrating that what we want to create here is an optimal environment for startups that focuses on supporting transformative science and great ideas in Switzerland.”

Dr. Anja König, Managing Director, Novartis Venture Fund:
“We are pleased to help energize the Basel region’s center of gravity for European healthcare ventures, offering startups the support they need to accelerate their ideas.”

Uwe Schoenbeck, Chief Scientific Officer, External Research and Development Innovation & Senior Vice President, Worldwide Research and Development, Pfizer:
“Through Pfizer’s support of BaseLaunch, we hope to advance the pace at which promising science is translated into potential medicines.”

 

report

Chinese Pharma Goes Global

24.06.2018

report Life Sciences

Roche acquires U.S. cancer specialist

21.06.2018

report BaselArea.swiss

Basel initiative supports life sciences start-ups

01.02.2017

BaseLaunch, an accelerator initiative launched and run by the location promotion organisation BaselArea.swiss, is a new partner of the start-up accelerator Kickstart. Life sciences start-ups will be promoted through a second Kickstart programme.

BaseLaunch, which will be launched on 22 February, is an accelerator initiative that aims to create the next generation of groundbreaking healthcare companies in the Basel region, according to a BaselArea.swiss announcement. The collaboration with Kickstart, one of the Europe’s largest multi-corporate start-up accelerators and an initiative of digitalswitzerland, will contribute towards accomplishing this objective. Kickstart is now starting a second programme.

“With the second edition taking place in Zurich and the extension of the programme to Basel, Kickstart will be one step closer to becoming the largest European start-up accelerator,” said Nicolas Bürer, managing director of digitalswitzerland, in a Kickstart statement. Kickstart describes Basel as a life sciences “hot spot” and says that the partnership will make it possible to “tap into the unexplored innovation potential”.

Kickstart Accelerator will select a shortlist of up to 30 start-ups that will be given the opportunity to develop their ideas in an 11-week programme at Impact Hub Zurich. In addition to life sciences, start-ups from the food sector, fintech, smart cities, and robotics and intelligent systems are also eligible.

The start-ups will receive support from experienced mentors and partner companies, and will have the chance to win up to CHF 25,000 as well as receiving a monthly stipend.

“Cooperation between the start-ups and corporate partners will allow the entrepreneurs to benefit from the corporates’ know-how and large customer networks, as well as enable them to develop new technologies and disruptive products together,” commented Carola Wahl, head of transformation and market management at AXA Winterthur, one of the corporate partners.

Interested start-ups can apply at Kickstart Accelerator.

 

report Invest in Basel region

Axovant propels gene therapy

07.06.2018

report Life Sciences

BASEL LIFE: Where the European Life Sciences Community gathers

05.06.2018

report Life Sciences

“The Basel region should not simply be part of the transformation, but should be helping t...

07.12.2016

Dr Falko Schlottig is Director of the School of Life Sciences at the University of Applied Sciences and Arts, Northwest Switzerland (FHNW), in Muttenz. He advises start-up companies in the life sciences and has founded start-ups himself.

In our interview, he explains how the School of Life Sciences would like to develop, why close interdisciplinary collaboration is so important and what future he foresees for the health system.

You come from industry and have also been engaged in start-ups yourself. Is it not atypical now to work in the academic field?
Falko Schlottig*:
If it were atypical, we would be doing something wrong as a university of applied sciences. Many of the staff at the FHNW come from industry. That’s important, because otherwise we could not provide an education that qualifies students for their profession and because through this network we can drive applied research and development forwards. With our knowledge and know-how we can make a significant contribution to product developments and innovation processes.

Is this how the FHNW differs from the basic research done at universities?
It’s not about making political distinctions, but about a technical differentiation. As a university of applied sciences, we are focused on technology, development and products. The focus of universities and the ETH lies in the field of basic research. Together this results in a unique value chain that goes beyond the life sciences cluster of Northwest Switzerland. This requires good collaboration. At the level of our lecturers and researchers, this collaboration works outstandingly well, for example through the sharing of lectures and numerous joint projects. On the other hand, there is still a lot of potential in the collaboration to strengthen the life sciences cluster further, for instance in technology-oriented education or in the field of personalized health.

Does “potential” mean recognition? Or is it a question of funding?
Neither nor! The distinction between applied research and basic research must not become blurred – also from the students’ perspective. A human resources manager has to know whether the applicant has had a practice-oriented education or first has to go through a trainee programme. It’s a question of working purposefully together in technology-driven fields even better than we do today in the interest of our region.

Are there enough students? It’s often said there are too few scientists?
Our student numbers are slightly increasing at the moment, but we would like to see some more growth. But the primary focus is on the quality of education and not on the quantity. What is important for our students is that they continue to have excellent chances on the jobs market. Like all institutions, however, we are feeling the current lack of interest in the natural sciences. For this reason, we at the FHNW are committed in all areas of education to subjects in the fields of science, technology, engineering and mathematics - or STEM subjects.

You have now been head of the School of Life Sciences at the FHNW for just over a year. What plans do you have?
We want to remain an indispensable part of the life sciences cluster of Northwest Switzerland. We also want to continue providing a quality of education which ensures that 98 percent of our students can find a job after graduation. In concrete terms, this means that we keep developing our teaching in terms of content, didactics and structure and follow the developments of the industrial environment and of individualization with due sense of proportion. In this respect, we’ve managed to attract people with experience in the strategic management of companies in the industrial field and people from institutions in the healthcare and environment sectors to assist us on our advisory board.
In research, we will organize ourselves around technologies based on our disciplinary strengths and expertise in the future and will be even more interdisciplinary in our work. We will be helped by the fact that we are moving to a new building in the autumn of 2018 and will have one location instead of two. In terms of content, we will establish the subject of “digital transformation” as an interdisciplinary field in teaching and research with much greater emphasis than is the case today. Finally, we should not simply be part of this transformation, but should be helping to shape it.

Apropos “digital transformation”, IT will also become increasingly important for natural sciences. Will the FHNW train more computer scientists?
Here at the School of Life Sciences we are successfully focused on medical informatics; the FHNW is training computer scientists in Brugg and business IT specialists in Basel. But we also have to ask ourselves what a chemist who has attended the School of Life Sciences at the FHNW should also offer in the way of advanced IT know-how in future – for example in data sciences. The same applies to our bioanalytics specialists, pharmaceutical technology specialists and process and environmental engineers. Nevertheless, natural science must remain the basis, enriched with a clear understanding of data and related processes. Conversely, an IT specialist who studies with us at the School of Life Sciences also has to come to grips with natural science issues. This knowledge is essential if you want to find a life sciences job in the region.

Throughout Switzerland – but also especially in the Basel region – there is a lot of know-how in bioinformatics. But from the outside, the region is not perceived as an IT centre. Should something not be done to counteract this perception?
We do indeed have some catching up to do in the life sciences cluster of Northwest Switzerland. The important questions are what priorities to focus on and how to link them up. Is it data mining – which is important for the University of Basel and the University Hospital? Or is it the linking of patient data with the widest variety of databases in order to raise cost-effectiveness in hospitals, for example? Or does the future lie in data sciences and data visualization to simplify and support planning and decision-making, which is one of the things we are already doing at the School of Life Sciences? The key issue is to know what data will serve as the basis of future decision-making in healthcare. Here it is also a question of who the data belongs to and both how and by whom the data may be used. This is one of the prerequisites for new business models. Since we are engaged in applied research, these issues are just as important for us as they are for industry. This hugely exciting discussion will remain with us for some years to come.

The School of Life Sciences at the FHNW covers widely differing areas such as chemistry, environmental technology, nanoscience and data visualization – how does it all fit together?
It is only at first glance that these areas seem so different – their basis is always natural science, often in conjunction with engineering science. The combining of our disciplines will be even better when they are all brought together in 2018, at the very latest. You can see it already, for example, in environmental technology: at first glance, you wonder what it has to do with bioanalytics, nanoscience or computer science. But the School of Life Sciences is strong in the field of water analysis and bioanalytics, and one of the biggest problems at the moment is antibiotic resistance. To find solutions here, you need a knowledge of chemistry, biology, analytics, computer science and also process engineering know-how. As from 2018/19 we will have a unique process and technology centre in the new building, where we will be able to visualize all the process chains driving the life sciences industry today and in the future – from chemistry, through pharmaceutical technology and environmental technology to biotechnology, including analytics and automation.

You’ve been - and still are - involved in start-ups. Will spin-offs from the School of Life sciences be encouraged in future?
We are basically not doing badly today when you compare the number of students and staff with the number of start-ups. But we do like to encourage young spin-off companies; at our school, start-ups tend to spring from the ideas of our teaching staff. Our Bachelor students have hardly any time to devote themselves to starting up a company. On the other hand, entrepreneurial thinking and engagement form part of the education provided at the School of Life Sciences. After all, our students should also develop an understanding of the way a company works. A second aspect is entrepreneurial thinking in relation to founding a company. The founding of a start-up calls for flexibility and openness on our part: How do we deal with a patent application? Who does it belong to? How are royalties arranged? Our staff have the freedom to develop their own projects. Our task is to define the necessary framework conditions. We already offer the possibility today of a start-up remaining on our premises and continuing to use these facilities. We have reserved extra space for this in the new building. We also make use of all the opportunities that the life sciences cluster of Northwest Switzerland offers today. This includes, for example, the life sciences start-up agency EVA, the incubator, Swiss Biotech, Swissbiolabs, the Switzerland Innovation Park Basel Area, BaselArea.swiss and also venture capitalists, to name just a few. We are well-networked, and here too we are doing what we can to help foster the development of our region

Why do you think it is apparently so difficult in Switzerland to establish a successful start-up?
There are two factors in Northwest Switzerland that play a part: a very successful medium-sized and large life sciences industry means the hurdles to becoming independent are much higher. When you found a start-up, you give up a secure, well-paid job and expose yourself to the possible financial risks associated with the start-up. The second big hurdle is funding, especially overcoming the so-called Valley of Death. Compared with the second step, it is easy to obtain seed capital. Persevering all the way to market with a capital requirement of between one and five million francs is very difficult.

That should change with the future fund.
It would of course be fantastic if there were a future fund of this kind to provide finance of between one and two million francs. This would finance start-up projects for two or three years. In this respect, it is incredibly exciting, challenging and moving to see the whole value chain from research to product in use, to be familiar with networks and to be involved. Today this is almost only possible with a start-up or a small company. But in the end, every potential founder has to decide whether he or she would prefer to be a wheel or a cog in a wheel.

Will the healthcare sector look dramatically different in five or ten years?
Forecasts are always difficult and often wrong. The big players will probably wait and see how the market develops. The healthcare sector may well look different in five to ten years, but not disruptively different. We will see new business models, and insurers will try exploring new avenues. This may lead to shifts. At the moment we are experiencing the shift from patient to consumer. On the product side, the sector is extremely regulated, so it is not easy to launch a new and innovative product onto the market. In my view, many regulations inhibit innovation and do not always lead to greater safety for the patients, which is actually what they should do.

How could this transformation be kick-started?
I believe that we at the University of Applied Sciences in Northwest Switzerland have a major contribution to make here. For example, we take an interdisciplinary and inter-university approach collaborating on socio-economic issues based on our disciplinary expertise within strategic initiatives. In this way we are trying to our part to help find solutions or answers. Switzerland and our region in particular have huge potential in this pool of collaboration. This now needs to be exploited.

Interview: Thomas Brenzikofer and Nadine Nikulski, BaselArea.swiss

*Prof. Dr. Falko Schlottig is Director of the School of Life Sciences at the University of Applied Sciences and Arts Northwestern Switzerland (FHNW) in Muttenz. He has many years of experience in research and product development and has held a variety of management positions in leading international medical device companies. Falko Schlottig has also co-founded a start-up company in the biotechnology and medical devices sector.

He studied Chemistry and Analytical Chemistry. He holds an Executive MBA from the University of St Gallen.

 

report Life Sciences

Novartis receives U.S. approval for migraine medication

22.05.2018

report Life Sciences

BaseLaunch startup Polyneuron raises new financing

14.05.2018

report ICT

Dr App – Digital transformation in the life sciences

30.11.2016

The future belongs to data-driven forms of therapy. The Basel region is taking up this challenge and investing in so-called precision medicine.
An article by Fabian Streiff* and Thomas Brenzikofer, which first appeared on Friday, 14 October 2016, in the NZZ supplement on the Swiss Innovation Forum.

So now the life sciences as well: Google, Apple and other technology giants have discovered the healthcare market and are bringing not only their IT expertise to the sector, but also many billions of dollars in venture capital. Completely new, data-driven, personalized forms of therapy – in short: precision medicine – promise to turn the healthcare sector on its head. And where there is change, there is a lot to be gained. At least from the investor’s point of view.

From the Big Pharma perspective, things look rather different. There is quite a lot at stake for this industry. According to Frank Kumli from Ernst & Young, the entry hurdles have been relatively high until now: “We operate in a highly regulated market, where it takes longer for innovations to be accepted and become established.” But Kumli, too, is convinced that the direction of travel has been set and digitalization is forging ahead. But he sees more opportunities than risks: Switzerland - and Basel in particular - is outstandingly well-positioned to play a leading role here. With the University of Basel, the Department of Biosystems Science and Engineering ETH, the University of Applied Sciences Northwest Switzerland, the FMI and the University Hospital Basel, the region offers enormous strength in research. It also covers the entire value chain, from basic research, applied research and development, production, marketing and distribution to regulatory affairs and corresponding IT expertise. The most important drivers of digital transformation towards precision medicine include digital tools that allow real-time monitoring of patients – so-called feedback loops. The combination of such data with information from clinical trials and genetic analysis is the key to new biomedical insights and hence to innovations.

Standardized nationwide data organization
In rather the same way that the invention of the microscope in the 16th century paved the way to modern medicine, so data and algorithms today provide the basis for offering the potential for much more precise and cheaper medical solutions and treatments for patients in the future. At present, however, the crux of the problem is that the data are scattered over various locations in different formats and mostly in closed systems. This is where the project led by Professor Torsten Schwede at the Swiss Institute of Bioinformatics (SIB) comes into play.

As part of the national initiative entitled Swiss Personalized Health Network, a standardized nationwide data organization is to be set up between university hospitals and universities under centralized management at the Stücki Science Park Basel. Canton Basel-Stadt has already approved start-up funding for the project. The standardization of data structures, semantics and formats for data sharing is likely to substantially enhance the quality and attractiveness of clinical research in Switzerland – both at universities and in industry. There is no lack of interest in conducting research and developing new business ideas on the basis of such clinical data. This was apparent on the occasion of Day One, a workshop event supported by BaselArea.swiss for the promotion of innovation and economic development and organized by the Precision Medicine Group Basel Area during Basel Life Sciences Week.

More than 100 experts attended the event to address future business models. Altogether 14 project and business ideas were considered in greater depth. These ranged from the automation of imaging-based diagnosis through the development of sensors in wearables to smartphone apps for better involvement of patients in the treatment process.

Big Pharma is also engaged
“The diversity of project ideas was astonishing and shows that Switzerland can be a fertile breeding ground for the next innovation step in biomedicine,” Michael Rebhan from Novartis and founding member of the Precision Medicine Group Basel Area says with complete conviction. The precision medicine initiative now aims to build on this: “Despite the innovative strength that we see in the various disciplines, precision medicine overall is making only slow progress. The advances that have been made are still insufficient on the whole, which is why we need to work more closely together and integrate our efforts. A platform is therefore required where experts from different disciplines can get together,” says Peter Groenen from Actelion, likewise a member of Precision Medicine Group Basel.

There is also great interest among industry representatives in an Open Innovation Hub with a Precision Medicine Lab as an integral component. The idea is that it will enable the projects of stakeholders to be driven forward in an open and collaborative environment. In addition, the hub should attract talents and project ideas from outside the Basel region. The novel innovation ecosystem around precision medicine is still in its infancy. In a pilot phase, the functions and dimensions of the precision medicine hub will be specified more precisely based on initial concrete cases, so that the right partners can then be identified for establishing the entire hub.

Leading the digital transformation
The most promising projects will finally be admitted to an accelerator programme, where they will be further expedited and can mature into a company within the existing innovation infrastructures, such as the Basel Incubator, Technologiepark Basel or Switzerland Innovation Park Basel Area.

Conclusion: the Basel region creates the conditions for playing a leading role in helping to shape digital transformation in the life sciences sector and hence further expanding this important industrial sector for Switzerland and preserving the attractiveness of the region for new companies seeking a location to set up business.

* Dr Fabian Streiff is Head of Economic Development with Canton Basel-Stadt

report Life Sciences

The Revival of Antibiotic Research

07.05.2018

report Invest in Basel region

Biotech industry continues to grow

07.05.2018

report Medtech

“This is the century of biology and biology for medicine”

05.10.2016

Andreas Manz is considered one of the pioneers in the field of microfluidics and at present is a researcher at the Korea Institute of Science and Technology in Saarbrücken (KIST Europe) and professor at Saarland University.

In our interview, the successful scientist explains the motivation that drives him to research and what it means to receive a lifetime achievement award from the European Patent Office.

You are known as a pioneer of microfluidics. How did you come to start researching in a completely new field?
Andreas Manz*:
Even as a child I was really fascinated by small things. They were mostly stones, insects or bugs that I took home with me. This interest in small things stayed with me, and eventually I went on to study chemistry at the ETH Zurich. In my PhD thesis I examined the natural law of molecular diffusion. If you entrap two molecules in a very small volume – rather like two birds in a cage – they cannot get away and become faster. I was instantly fascinated by this acceleration. My professor Willy Simon, an expert in chemical sensors and chromatography, talked in his lectures about processes can also get very fast when they are reduced in size. And that instantly fascinated me.

But so far you have been talking about pure chemistry – when did you get the idea of using chips?
I started working for a company in Japan in 1987. That’s where I first came into contact with chip technology. I was part of the research department myself, but I kept seeing colleagues disappearing into cleanrooms and coming back with tiny chips. That inspired me and got me wondering whether you could not also pack chemistry onto these chips instead of electronics. After all, even the inner workings of the tiniest insect involves the transportation of fluid, so it should also work on a small chip. At Hitachi I was eventually able to get my first microfluidic chip produced for test purposes.

From Japan your journey then took you to Ciba-Geigy in Basel. What prompted that move?
Michael Widmer was then Head of Analytical Chemistry Research at Ciba-Geigy in Basel. This brilliant fascinated me from the word go: he had the vision that you should also integrate crazy things in research and not only look for short-term financial success. Industry should allow itself to invest in quality and also develop or promote new methods in the research activities of a company if it could be of benefit to the company. So Professor Widmer brought me to Basel, where it was my mission to pack “the whole of chemistry”, as he put it, on a single chip. While Michael Widmer did not yet know what to expect, he had a feeling that it could be worthwhile.

How did you go about it?
At that time, chips were very new and not entirely appropriate for the world of pharmaceuticals. Ciba-Geigy, too, was not enthusiastic about the new application initially. There was no great interest in making changes to existing technologies and processes that worked. But in my research I was able to try out what might be possible. I found, for example, that electrophoresis – a method for separating molecules – could work. It would be relatively easy to miniaturize this method and test it to see whether it also speeds up the process. And the results were very good: We were able to show that a tenfold miniaturization of electrophoresis makes the process 100 times faster without compromising the quality of the information. This realization was really useful for clinical diagnosis and the search for effective molecules in drug discovery. At the same time, we were also testing different types of chips that we sourced from a wide variety of producers.

When did the time come to go public with the new technology?
At the ILMAC in Basel in 1996, Michael Widmer organized a conference in the field of microfluidics – which proved to be a bombshell. We had planned for this effect to a large extent, because in the run-up to the meeting we had already invited selective researchers and shown them our work. This hyped things up a little, and at the conference we were eventually able to mobilize researchers from Canada, the USA, the Netherlands, Japan and other countries to present the new technology of microfluidics.

Although the attention was there, Ciba-Geigy nevertheless later brought research in this field to an end. Why was that?
Basically we lacked lobby groups within the company and a concrete link to a product. Our research was somewhat too technical and far ahead of its time, and within Ciba-Geigy they were simply not yet able to assess the potential of the technology. Added to which, we had not given any concrete consideration to applications; we were more interested in the technology and experiments than in its commercial use. When a large picture of me then appeared in a magazine with a report on microfluidics, and the journal pointed out on its own initiative that Ciba-Geigy was not adequately implementing the technology, the research was stopped. I was quite fortunate under the circumstances: Since the company had terminated the project, I found that – despite a non-compete clause – I was able to follow the call to Imperial College in London within a short time, where I could continue research in microfluidics with students. In addition, I joined a company in Silicon Valley as consultant.

Is it not typical that a large company fails to transform a pearl in its portfolio into a new era?
You should not see it so negatively, because microfluidics was a pearl not for the pharmaceutical industry, but rather for environmental analysis, research or clinical diagnosis. The pharmaceutical industry dances to a different tune. It prefers to buy in the finished microscope at a higher price than get it constructed itself for relatively little money. Michael Widmer and his team in research and analytical chemistry at Ciba-Geigy developed many things in a wide variety of fields – with which were far ahead of their time.

Microfluidics is an established field today. What are the driving forces now?
To my mind there are two driving forces: firstly the application and the users and secondly academic curiosity as regards the technology and also training. The first of these is the stronger driving force: there are cases in which the application of a microfluidic solution is not absolutely necessary to do justice to the application. Take “point of care”, for example. The objective is to analyse a patient directly at the place where he or she is treated – for example, in intensive care. The patient is evaluated, blood and respiratory values are analysed, and it is possible to assess immediately whether the measures taken are having an effect in the patient. Another possibility is to integrate the widest variety of analytical options in smartphones – similar to the Tricoder in Star Trek. I’m pretty sure that something like that is feasible. But at the moment the hottest topic in the commercial sector is clinical diagnostics. This came as a surprise to me, because you cannot reuse a chip that has come into contact with a patient’s blood. You need a lot of consumable material, which is also reflected in the price. But perhaps new funding models can be found in which, for example, the device is provided, but the consumable material – i.e. the chips – are paid for separately, rather like a razor and razor blades.

Where do you see opportunities for Switzerland in this field?
The education of qualified people is important. Here the ETH and EPFL play a particularly important role for Switzerland, because they attract students from all over the world. They hopefully leave Switzerland with good memories and could possibly campaign later for the commercialization of technologies. That could be a huge opportunity. Of course there are also generous people within Switzerland, but there is a tendency here to economize and think twice before deciding whether and, if so, where to invest one’s money. It’s a question of mentality and not necessarily typically Swiss. It’s also not a bad thing, because in precision mechanics, for example, reliability and precision are essential – and this technology fits with our mentality. “Quick and dirty” works better in Silicon Valley and Korea – but the products then often fail to ensure up to the quality standards here. As a high-price island, Switzerland offers little, opportunity for cheap production, which is why the focus is on education and existing technologies. This too is very important and has a good future.

Will microfluidics one day become as big as microelectronics is today?
I don’t think so, because it is limited to chemical and cytobiological applications and is also not as flexible as microelectronics. At most, I see the new technology being used on existing equipment or processes.

But most of the systems on the market today are very much closed, so it is difficult to integrate new technologies here.
Yes, but that’s only partly true, because existing devices also have to be upgraded. Take a mass spectrometer, for example. You can buy one of these, and there are certainly many companies that sell this equipment. But if ten companies offer something equivalent, you have to stand out from the mass. So if a “Lab on a Chip” is added on, then this mass spectrometer enjoys a clear advantage. While the company makes money from the sale of the equipment, it is the microfluidic chip that gives the incentive to buy – and there is certainly a lot of money to be made from this. You see, we are living in the century of biology and medicine and are only just beginning to takes cells from the body to regenerate them and then perhaps re-implanting them as a complete organ. When you see what has been achieved in physics and electrical engineering in the last century, and translate that into biology and medicine, then we have an awful lot ahead of us. Technology is needed to underpin these radical changes. SMEs in particular are very good at selling their products to research; that’s a niche. In most cases, small companies use old technology and modify it – such as a chip in a syringe that then analyses directly what the constituents of a fluid are when it is drawn up into the syringe. This opens up many opportunities.

You have also co-founded companies, but describe yourself mainly as a researcher. How do the two go together?
Actually I was never an entrepreneur, but always just a scientific advisor. I preferred to experience the academic world instead of becoming fully engaged in a company. Deep down, I’m an adventurer who comes to a company with wild ideas. Money is also never a priority for me; I always wanted to improve the quality of life or give something to humanity. It is curiosity that drives me. When I see a bug that flies, that drives me to find out how it works. There are ingenious sensors in the tiniest of creatures, and as long as we cannot replicate these as engineers, we still have work to do. This inspires me much more than quarterly sales revenue and profits.

But money is also an important driver for research.
Yes, it’s all about money, right down to university research. Research groups are commissioned by companies because of the profit they hope to gain. Even publicly funded research always has to show evidence of a commercial application. Curiosity or the goal of achieving something of ethical value is hardly a topic in the engineering sciences. Of course it’s important that our students can also enter industry; after all, most of the tax revenue comes from industry. But if I personally had the freedom to choose, then I would prefer to pursue work as a form of play – which can by all means result in something to be taken seriously. Take electrophoresis on a chip: That was also quite an absurd idea to begin with, and it led to something really exciting! A lot of my work therefore has a playful, non-serious aspect to it – for me that is exactly right. You see, I can produce a chip which deep inside it is as hot as the surface of the sun, but which you can nevertheless hold in your hand. It’s crazy, but it works, because only the electrons have a temperature of 20,000 Kelvin. The glass outside does not heat up very much as a result, and the chip does not melt. And suddenly you have plasma emission spectroscopy on a chip as the result of a crazy idea. I feel research calls for a certain sense of wit, and I often like to say that, with microfluidics research, we take big problems and make them so small that you can “no longer see them”.

You have covered so many areas of microfluidics yourself – are other researchers still able to surprise you with their work?
Admittedly, I am rather spoiled today by all the microfluidic examples that I have already seen. Sometimes I feel bored when I go to a microfluidics conference and see what “new” things have emerged – I somehow get the feeling I’ve seen it all before. The pioneering days, when there was also a degree of uncertainty at play, are probably definitely over. Today you can liken microfluidics to a workshop where you get the tools you need at any given time. This means of course that the know-how has also become more widespread: Initially I possessed perhaps a third of all knowledge about microfluidics worldwide; today it is much less. So I now enjoy casting my research net further afield.

You received a lifetime achievement award from the European Patent Office last year. What does this award mean to you?
You cannot plan for an award – at most you can perhaps hope for one. When you then get it, it brings a great sense of joy. The award process itself was also exciting: as with the Oscars, there were three nominees: a Dutchman who developed the coding standard for CD, DVD and Blu-ray discs, which is still used to this day, and a researcher from Latvia who is one of the most successful scientists and inventors in medical biochemistry with more than 900 patents and patent applications. Faced with this competition, I reckoned I did not have much chance of the award and was absolutely astonished when I was chosen. The jury explained that its decision was down to the snowball effect: citations almost always refer to my patents at the time with Ciba-Geigy.

Interview: Fabian Käser and Nadine Nikulski, BaselArea.swiss

*Andreas Manz is a researcher at the Korea Institute of Science and Technology in Saarbrücken (KIST Europe) and professor at the Saarland University. He is regarded today as one of the pioneers in microchip technology for chemical applications.

After positions in the research labs of Hitachi in Japan and at Ciba-Geigy in Basel, he took up a professorship at Imperial College in London, where he headed the Zeneca-SmithKline Beecham Centre for Analytical Chemistry. In the meantime he was also a scientific advisor for three companies in the field of chip laboratory technology, one of which he founded himself. In 2003, Manz moved to Germany and headed the Leibniz Institute of Analytical Sciences (ISAS) in Dortmund until 2008.

Around 40 patents can essentially be attributed to him, and he has published more than 250 scientific publications, which have been cited more than 20,000 times to date.

report Life Sciences

Polyphor launches on the stock exchange

30.04.2018

report Life Sciences

Novartis app facilitates clinical trials

26.04.2018

report Production Technologies

Keime und Antibiotikaresistenzen – ein Eventthema, das uns alle betrifft

05.10.2016

Bereits zum siebten Mal findet am 25. Oktober 2016 der eintägige Event aus der Reihe der Wassertechnologie statt, den BaselArea.swiss gemeinsam mit der Hochschule für Life Sciences der Fachhochschule Nordwestschweiz (HLS FHNW) organisiert. Am diesjährigen Event dreht sich im „Gare du Nord“ in Basel alles um „Keime, Antibiotikaresistenz und Desinfektion in Wassersystemen“.

Die Teilnehmer erleben Vorträge und Diskussionen, Institutionen können sich in der Fachausstellung mit Postern zeigen und so zu vertieften Diskussionen anregen. Ein Schlüssel für den langjährigen Erfolg der Veranstaltungsreihe ist die Kooperation der beiden Partner. Thomas Wintgens vom Institut für Ecopreneurship der HLS FHNW betont: „Uns ist die Zusammenarbeit mit BaselArea.swiss sehr wichtig, weil die Organisation ein regional stark vernetzter Akteur im Bereich von Innovationsthemen ist.“

Man habe eine gute Symbiose zwischen spezifischen, fachlichen Kompetenzen und dem Wissen über Themen und Akteure gefunden. „Auch in diesem Jahr ist es uns wieder gelungen, ein komplett neues Thema aufzunehmen“, sagt er. Die Forschungsaktivitäten der Gruppe um Philippe Corvini von der Hochschule für Life Sciences FHNW gaben den ersten Impuls zur diesjährigen Themenwahl.

Philippe Corvini, warum ist das Thema „Keime, Antibiotikaresistenz und Desinfektion in Wassersystemen“ spannend für eine grosse Veranstaltung?
Philippe Corvini: Das Thema ist in den letzten Jahren stärker in den Bereich der Umweltforschung vorgedrungen, immer mehr Arbeitsgruppen beschäftigen sich mit dem Verhalten und Vorkommen von Antibiotikaresistenzen in der Umwelt. Zudem haben auch auf nationaler Ebene die Aktivitäten zugenommen, es gibt ein nationales Forschungsprogramm und eine nationale Strategie zum Umgang mit Antibiotikaresistenzen. In den nächsten Jahren wollen wir intensiver untersuchen, wie sich diese Resistenzen zum Beispiel in biologischen Kläranlagen verhalten und welche Faktoren die Weitergabe von genetischen Informationen, die zu Antibiotikaresistenzen führen, beeinflussen.

Welche neuen Erkenntnisse erwarten die Besucher?
Philippe Corvini:
Wir werden am Event die neuesten Ergebnisse unserer Forschung vorstellen. Bisher wurde eine Resistenz relativ simpel erklärt: In der Umwelt existiert ein Antibiotikum, wodurch sich Resistenz-Gene bilden. Diese werden übertragen, die Resistenz verbreitet sich. Wir haben nun entdeckt, dass resistente Bakterien ein Genom besitzen, das sich weiterentwickelt, so dass sie sich am Ende sogar von Antibiotika ernähren können. Diese resistenten Bakterien bauen also die Antibiotika-Konzentration ab, so dass Bakterien, die sonst empfindlich auf den Wirkstoff reagiert haben, nun im Medium überleben und sogar ihrerseits eine Resistenz entwickeln können. Wir hoffen, künftig die Ausbreitung der Resistenzen bremsen zu können.

Wie könnte man dies schaffen?
Thomas Wintgens:
Wir werden demnächst im Pilotmasstab verschiedene Betriebsweisen von biologischen Kläranlagen untersuchen, um herauszufinden, wie diese Verbreitungswege durch Betriebseinstellungen in den Anlagen beeinflusst werden können. Ausserdem forschen wir an Filtern, welche die antibiotikaresistenten Keime zurückhalten und so die Keimzahl stark reduzieren können.

Warum ist die diesjährige Veranstaltung auch für Laien interessant?
Philippe Corvini:
Ich glaube, fast jeder hat eine Meinung zum Thema Antibiotikaresistenz und viele Leute haben eine Ahnung, wie dringend das Thema ist. Schliesslich betrifft das Thema Gesundheit uns alle.

Ein Fachevent – auch für Laien
Laut Thomas Wintgens dürfen die Teilnehmer viele kompetente Redner erwarten: „Wir freuen uns zudem sehr, dass Helmut Brügmann von der Eawag die nationale Strategie und deren Bedeutung für den Umweltbereich vorstellen wird.“

Generell berührt das Thema Wasser uns alle, weil es unser wichtigstes Lebensmittel ist. Wir konsumieren es als Trinkwasser, über Nahrungsmittel oder nutzen es für unsere persönliche Pflege. Gerade deswegen die Wassertechnologie laut Wintgens ein spannendes Thema für eine öffentliche Veranstaltung: „Wasserqualität ist jedem von uns wichtig und es besteht in der Öffentlichkeit ein grosses Interesse an diesem Thema.“ Gleichzeitig würden die Wassertechnologien aber auch Firmen die Möglichkeit bieten, innovative Produkte zu entwickeln und Stellen zu schaffen.

Seit 2009 Plattform für das regionale Netzwerk
Die HLS FHNW veranstaltet seit 2009 gemeinsam mit i-net/BaselArea.swiss die Veranstaltungsreihe im Bereich Wassertechnologie, welche jährlich rund 120 Teilnehmer anzieht. Die Idee, eine Eventreihe zu starten, entstand aus der Überzeugung heraus, dass Wasser in der Region ein wichtiges Thema ist und hier die Wertschöpfungskette vorhanden ist», so Thomas Wintgens. Jedes Jahr setzten die Verantwortlichen neue Themenschwerpunkte, zum Beispiel Mikroverunreinigungen im Wasserkreislauf, Membranverfahren oder Phosphor-Rückgewinnung. Wintgens erklärt: „Jedes Jahr machen Akteure aus der Forschung, der Technologie oder dem Bereich der Anwendungen mit und präsentieren sich vor Ort“.

Der Plattform-Gedanke war den Initianten von Anfang an wichtig, der Event sollte das regionale Netzwerk stärken und Innovationsvorhaben ermöglichen. Diese Strategie hat sich laut Thomas Wintgens bewährt: „Der Anlass ist ein wichtiger Baustein in unserer Öffentlichkeitsarbeit und wurde zu einem festen Treffpunkt der Interessenten und Kooperationspartnern aus der Region“. Viele Teilnehmer würden den Event schon seit Jahren verfolgen und seien jeweils neugierig auf das Thema im nächsten Jahr.

BaselArea.swiss und die Hochschule für Life Sciences FHNW  (HLS) führen am 25. Oktober im „Gare du Nord“ in Basel ein Symposium unter dem Titel „Keime, Antibiotikaresistenz und Desinfektion in Wassersystemen“ mit Referenten aus den Bereichen Forschung, Verwaltung, Wasserversorgung und Technologieanbieter durch. Eine Anmeldung bis 19.10.2016 ist erforderlich.

report Invest in Basel region

Roivant launches new subsidiary in Basel

12.04.2018

report Life Sciences

Novartis to acquire gene therapy specialist

10.04.2018

report Invest in Basel region

BaselArea.swiss welcomes Biopharmaceutical Company Ultragenyx

06.07.2016

BaselArea.swiss Economic Promotion is pleased to announce that Ultragenyx, a biopharmaceutical company focused on the development of novel products for rare and ultra-rare diseases based in the San Francisco Bay Area, California, is opening their European headquarters in the city of Basel, Switzerland. Stefano Portolano, M.D., has been appointed Senior Vice President and head of Ultragenyx Europe. In this role, Dr. Portolano will be responsible for building and leading the Ultragenyx commercialization efforts across Europe and developing the company's European organization.

«Ultragenyx selected Basel as our European headquarters because of the area’s thriving life sciences community, accessibility to the rest of Europe, business-friendly environment and strong international talent pool,» said Dr. Portolano. «On behalf of Ultragenyx, I would like to thank the team at BaselArea.swiss for their partnership throughout this process, as they have been invaluable as we look to establish our European presence and help bring promising therapies to patients throughout the region. We are focusing on key hires to establish necessary capabilities so that we are ready to launch if we receive approval, and we are confident we will be able to find and attract key talents in Basel».

Dr. Portolano brings over 20 years of experience in the biopharmaceutical industry, in medical, commercial and general management roles in both Europe and the United States. He has worked both on pre-launch and launches of products for rare diseases, both at Genzyme and Celgene. Before joining Ultragenyx, he spent ten years at Celgene Corporation in increasing leadership roles, most recently as Vice President of Strategy & Commercial Operations, EMEA. Prior to Celgene, he worked at Genzyme for eight years. Dr. Portolano received his M.D. degree from Federico II University in Napoli, Italy. He completed his postdoctoral fellowship and served as Adjunct Assistant Professor of Medicine at the University of California at San Francisco.

About Ultragenyx
Ultragenyx is a clinical-stage biopharmaceutical company committed to bringing to market novel products for the treatment of rare and ultra-rare diseases, with a focus on serious, debilitating genetic diseases. Founded in 2010, the company has rapidly built a diverse portfolio of product candidates with the potential to address diseases for which the unmet medical need is high, the biology for treatment is clear, and for which there are no approved therapies.

The company is led by a management team experienced in the development and commercialization of rare disease therapeutics. Ultragenyx’s strategy is predicated upon time and cost-efficient drug development, with the goal of delivering safe and effective therapies to patients with the utmost urgency.

The company's website for more information on Ultragenyx

About BaselArea.swiss
BaselArea.swiss is responsible for the international promotion of the economic region of Basel, Switzerland. In a joint effort, the economic promotion agencies of the Swiss cantons of Basel-Stadt, Basel-Landschaft, and the Jura support expansion and relocation projects of foreign companies, and offer consulting services to entrepreneurs and startups. The identification and procurement of suitable real estate and properties for international and national companies is an important service of BaselArea. BaselArea’s consulting services for interested parties are provided free of charge.

report Life Sciences

Basel scientists make cancer breakthrough

22.03.2018

report Invest in Basel region

Technologiepark Basel verdoppelt seine Fläche

19.03.2018

report Life Sciences

«It would be very good to try to widen everyone’s vision of what you can do with biology –...

11.06.2015

Neil Goldsmith and two colleagues started working on Evolva in 2001, moving its headquarters from Denmark to Reinach in Switzerland in 2004. The «Brewers of 21st Century» discover and provide ingredients produced with the help of biologically engineered yeast. CEO Neil Goldsmith explains in the i-net interview how this works and why, initially, they received their seed money for another business model.

You call yourselves the «Brewers of 21st Century». What does that mean?
Neil Goldsmith*: We make ingredients for food or cosmetics by genetically engineering baker’s yeast and brewing it. If we want to make Stevia for example, we take the genes the plant uses to make that molecule and put those genes into the yeast so the yeast can make the molecule. We then ferment the yeast by brewing, just like with beer. The yeast takes up the sugar, turns it into Stevia and pumps it out; we filter off the yeast and have Stevia in the «broth» which we can purify out.

Why should biosynthetically brewed Stevia be better than the grown one?
The Stevia plant makes a lot of sweet molecules. However most of these molecules start to taste bitter when you use a lot of them – that is why the current Stevia-based soft drinks only have about a one-third reduction in the level of sugar or high-fructose corn syrup. Now, the plant also makes some molecules that do not give a bitter taste, but it makes very small amounts of them. Therefore it’s not economic and sustainable to grow the plant to produce these molecules. But creating Stevia by brewing it is a very promising alternative.

So with yeast, you can make almost anything?
In principle, we can make anything that occurs in nature. The key is combinatorial genetics. For the yeast to turn sugar into Stevia it needs 32 genes that have to work together: Finding what those genes are and optimizing them so they all work well together is what we are founded around. It’s in principle more complex than making an antibody or an enzyme, because that’s just one gene or one protein. We were intrigued by the idea of taking the combinatorial thinking of chemistry and applying it to genetics. You can use our approach to make old molecules in better ways – which is what we do now – or you can use it to make new molecules, which was the original idea. You would get new structures that have never been seen before and they might cure diseases.

Evolva has pivoted from pharmaceuticals to the nutrition sector – how did this come about?
We pivoted because we weren’t finding interest from the pharma companies for our technology. Instead, food and cosmetic companies were approaching us. We initially agreed to work for some of these companies just to bring some money in. After a while, we started to understand that the business itself looked interesting. Then we had to persuade our investors, who invested in us because we were going to develop a new diabetes drug, that switching to food and other ingredients made sense.

A completely different market?
Yes and with lower margins. But also less risky, with lower development costs and much less competition compared to pharma. Today we’re actually a network business; our analogy is a railway company. Two molecules that might be very, very different – take vanillin and benzocaine, an anaesthetic – are actually on the same railway track from the yeast point of view. So we want to build and own this track and own that network. If we invest in making vanillin well, that also gets us towards benzocaine. It was interesting to realise that there are many different products by simply pursuing the same track. Maybe they’re not all so big in market terms, but they are built on the same research and can be produced with the same infrastructure: Everything is brewing. So you can produce one product this week and another one next week. Also it is possible to respond very quickly to market demand.

Pharma start-ups are mostly being exited through a trade sale. Will Evolva be a different story?
The food and personal care industries have seen very little transformative innovation. Companies typically spend only very little on R&D and that gives the opportunity to build something transformative. In pharmaceuticals you can’t do that because the big pharma companies will spot you and adapt pretty quickly. In a way it’s a problem for the biotech industry that it has stayed so reliant on pharmaceuticals and not innovated its business models for 30 years. In the ingredients business everyone collaborates with everyone, and by partnering and building a network you can get the resources you need. Using the railway analogy: If you want to build a track from Basel to Geneva and you want to fund this track, you fund it by selling off Yverdon-les-Bains to someone who wants this station, meaning this product. In pharma, this way of thinking is not possible. So I really believe we can grow our business organically and remain an independent company.

What is your business strategy with Evolva?
We want to make products where there is a clear benefit, not just that we can make it cheaper but also that we can make it better, like Stevia. We don’t want to compete with the big companies. Instead we are looking to develop products which have a new market or can open up a new market. In a nutshell, we focus on «high priced, small volume» in the health, wellness and nutrition industry. One of our latest products is Nootkatone, a grapefruit fragrance that turned out to be very good at killing and repelling the ticks that transmit Lyme disease. There is an unmet need for that and we have a product that is very safe, it smells nice and it’s very good at both repelling and killing the ticks.

Will you do the production yourself or enter into a partnership for the production?
At the moment, all we have is labs. In some cases we have a partner who does it, and in other cases we pay someone on a contract basis. But in the long term we want our own brewery, because it’s a business with constant improvement and ultimately, you need to have the bug and the brewery integrated. If you want to be flexible in manufacturing, it needs to be your facility. But this is a long-term plan that costs many tens of millions of dollars. We don’t want to do that too quickly and then find that we can’t sell enough products quickly enough to justify that.

Would you do that in Switzerland or somewhere else in the world?
I wouldn’t completely rule out Switzerland; it’s obviously a high-cost location for manufacture, but it’s possible to run these facilities pretty lean and there is a value in this market to being Swiss. If you’re selling a food ingredient and it’s a Swiss food ingredient you get a certain quality association. We don’t know the answer yet, but I think there will be something in the States and something in Europe.

Let’s talk more about the buzz around high-tech food, which is sustainable and healthier. There seems to be a lot of attention surrounding this issue that suggest you may be in the right place at the right time.
It’s clear that a lot of megatrends in society converge in the space we occupy at present. It started about four to five years ago, and it has taken a few years to build a momentum. But we don’t know how it will play out in reality. What’s going to be interesting is that food is fundamentally a very conservative culture, and innovation– by definition – is not. So how do you marry these cultures? If you look at the big food companies and if you take brewing beer, it’s a very conservative industry. But the rise of craft brewing is really challenging that. There are people experimenting with different flavours of beer made from different ingredients. The same could happen with synthetic biology: Innovation happens in small companies.

Is there a technological driver behind this trend?
I don’t see the development as technology driven; it’s rather about adapting technology to these needs because technology sort of arises for other purposes. Look at the smart farming movement: It’s just applying sensors; now you can image every single corn plant in the field and data mine. I think it’s more that various technologies have matured to the point where they can start to be used here, because they need to be robust and relatively affordable, and then you start to assemble them together. Now you can set up a biotech lab in your garage and start to do stuff – this is new for biotech. And it does raise important questions as to how we control it. There is no way you can track every single garage around the world.

What is the potential in this region; should there be more attention for this field?
I think it would be very good to try to widen everyone’s vision of what you can do with biology, because it’s not just cancer drugs. I think the limiting factor is investors, and that’s really why there are so few people in this space currently. Traditional biotech investors are investing in medical stuff – we only got our money because we started off doing that. We would never have got the money if we started off doing what we now do. I think you need new kinds of investors.

They are mostly likely to be found in Silicon Valley.
Yes, we need people that really think hard and deep about where trends will be and start playing there. Europe is not so good at doing that; it only follows. We need a different mindset. If you look at Silicon Valley, most of the people who are in the nutrition area come from the IT sector, whereas the biomedical guys find it very hard to get out of their way of thinking. The UK investment in food and agricultural research has declined, and you don’t have equivalents in Europe to the movement in the US of teaching farmer’s kids technology.

Next year will be a big year for you with Stevia hitting the market, will that be a booster? What do you expect?
We have a product we are very confident of in terms of taste and competiveness. Potentially, it’s very big. It’s clearly got the possibility of being a billion-dollar product in terms of revenue. But will it get there? We don’t know. It will take some years to get into the market. These products typically have 5 to 10 years to achieve peak sales, because we’re in a slow-moving industry. Unlike a pharmaceutical product that gets picked up immediately by the healthcare industry, market incumbents in the nutrition sector don’t change their flagship products and brands overnight. They normally extend their product lines gradually.

Interview: Thomas Brenzikofer and Nadine Nikulski, i-net

*Neil Goldsmith is co-founder and CEO of Evolva SA in Reinach. He has a 25-year track record in building successful biotech companies, among them TopoTarget A/S and Personal Chemistry AB. Earlier in his career, he was Chief Executive Officer of Auda Pharmaceuticals, GX Biosystems and PNA Diagnostics.
He received a first-class BA Honours degree in Zoology from Balliol College, University of Oxford, and is a graduate of the New Enterprise Programme at the Scottish Enterprise Foundation, University of Stirling.

About Evolva
Evolva was founded by three people, Neil Goldsmith and two others as a spin-off of the US company Phytera, that was doing plant cell culture, had a lot of plant genes and was trying to find a way to put them in a host that was more robust than plant cells. Phytera IPO failed and the company needed to cut costs. It was clear that the project of putting the genes into yeast was going to be one of the things to be cut. Neil Goldsmith wanted to take this out and found a company around it. So in 2001 they set up Evolva – initially in Denmark – and raised some seed money just before 9/11. In 2003, they thought they had enough to raise a proper round as the market had improved. At this point the three partners already wanted to change our headquarters to another location than Denmark, as the country «wasn’t world class» in the field of small molecule pharmaceutics. In addition, they wanted to be where there was more money available. They looked at the States, Canada, UK but ended up choosing Switzerland.


Video explaining the fermentation process

report Precision Medicine

Novartis steps up digital therapy development

01.03.2018

report Precision Medicine

Genedata increases research efficiency

22.02.2018

report Life Sciences

Therapeutic gene editing is taking off – and Basel is right in the middle

28.01.2015

Very rarely can a scientist claim to have had a fundamental and game-changing impact in his field and beyond. But Jennifer Doudna from University of California, Berkeley, and Emmanuelle Charpentier, who was working at the University of Umeå in Sweden at the time, can claim just that. In mid-2012, when they published their discovery of an RNA-programmable tool (termed CRISPR for Clustered Regularly Interspaced Short Palindromic Repeats) which allowed DNA to be cleaved in a very targeted and extremely efficient manner, they created a stir, because this tool could potentially also be used for RNA-programmable genome editing. And only months later, this is exactly what George Church from Harvard and Feng Zhang from the Broad Institute of MIT and Harvard showed in two independent publications: CRISPR could be used to edit the genome of potentially any organism, from yeast to man, whether to introduce new mutations, to correct disease-causing mutations or to insert or remove whole sections of DNA in the genome, and all of this in no time at all. After this the biomedical community was jumping with excitement, and scientists were describing CRISPR as the “holy grail” of genetic engineering and a «jaw-dropping» breakthrough in the fight against genetic disease.

A new era in gene editing
It was not that genomes had not been editable until then. But for higher eukaryotes, such as mice, monkeys, dogs or also human cells, it was a slow, painstaking and expensive process that could potentially take months if not years. But with CRISPR it was possible for the first time to edit the genome very precisely and at unprecedented speed and very little cost. The research community quickly embraced CRISPR as a research tool to engineer custom transgenic lab animals in a matter of weeks—saving about a year's worth of work. This not only enables new model organisms to be established in a very short time for many hitherto hard to treat diseases, such as Alzheimer’s, multiple sclerosis, autism, certain forms of cancer, but also allows cell lines to be edited for drug screening or new approaches to be explored for treating HIV. It might also be possible to for example correct the chromosomal abnormality associated with Down syndrome early in a pregnancy, to reintroduce susceptibility to herbicides in resistant weeds, to bring back extinct animal species and very much more.

On the road to commercialization
From the outset, of course, it was clear that CRISPR would also attract a lot of interest from the biotech world, which is also where Basel enters into the story. So far, three therapeutic biotech companies have been formed around CRISPR, two of them having links to Basel. The first of these was Editas Medicine from Boston, which was launched in late 2013 with $43 million in venture capital from Flagship Ventures, Thirdrock Ventures, Polaris Partners and the Partners Innovation Fund. A few months later, the Basel office of Versant Ventures announced a Series A investment of $25 million to start up CRISPR Therapeutics with headquarters in Basel. And in late 2014, Atlas Ventures and Novartis announced the formation of Intellia Therapeutics (although it had already existed in stealth mode for almost two years) with a Series A investment round of $15 million.

And just recently Novartis also concluded the first biotech-pharma licensing deal in this area with Intelllia, for exclusive rights for ex vivo engineering of chimeric antigen receptor (CAR) T cells (another hot topic in biotech/pharma research these days) and the right to develop a number of targets for ex vivo editing of hematopoietic stem cells. Ex vivo applications, in which cells are extracted from patients and manipulated outside the patient’s body and then re-infused, will very likely be among the first treatments to be developed for Editas Medicine and CRISPR Therapeutics, as this can be addressed with the technology as it stands today. The companies expect clinical trials to begin in as little as three years.

Challenges ahead
One of the big challenges, however, will be to make CRISPR a technology to treat genetic diseases of any kind with a one-time fix that can «edit» out genetic abnormalities and cure disease at the genetic level, potentially in a single treatment, in vivo. But for this to happen, ways have to be figured out for safely and effectively delivering a gene-editing drug into the body, which is still a very big hill to climb.

And there is another issue: The patent situation is in a state of some confusion. The first patent issued went to the Broad Institute of Harvard and MIT and was licensed by Editas Medicine. However, after that patent was granted, Jenifer Doudna, originally one of the co-founders of Editas Medicine, broke off her relationship with the company, and licensed her intellectual property - in the form of her own pending patent - to Intellia Therapeutics. And to confuse the issue further, Emmanuelle Charpentier, who claims that «the fundamental discovery comes from my laboratory», licensed her own rights in the same patent application to CRISPR Therapeutics.

So there appears to be a lot of work for patent lawyers to sort out in the next few months. But despite all the legal wrangling, CRISPR will without doubt continue to transform biomedical research in a way very seldom seen before and be transformative in the way we treat genetic diseases.

More information
General
Youtube Video «Genome Editing with CRISPR-Cas9»
New York Times article «A Powerful New Way to Edit DNA»
The Independent article «The more we looked into the mystery of Crispr, the more interesting it seemed»

Companies
Editas Medecine
CRISPR Theraeputics
i-net article «$25 million in series A financing for Basel-based CRISPR Therapeutics»
Intellia Therapeutics
collaboration with Novartis:
FierceBiotech article «Novartis adopts a CRISPR-Cas9 partner and jumps into the hot new R&D field»
FierceBiotech article «Novartis joins Atlas in launching a CRISPR Cas biotech with a $15M bankroll»
Xconomy article «CART + CRISPR = 1st-Of-Its-Kind Biotech Deal From Novartis, Intellia»

Patents
MIT Technology Review article «Who Owns the Biggest Biotech Discovery of the Century?»
Independent article «Scientific split - the human genome breakthrough dividing former colleagues»
Fiercebiotech article «A biotech war is brewing over control of the revolutionary CRISPR-Cas9 tech»

report Life Sciences

Novartis is World’s Most Innovative Biotech Company

21.02.2018

report Life Sciences

Roche accelerates development of cancer treatments

16.02.2018

report ICT

Torsten Schwede: «Seit 2007 läuft das Datenwachstum in der Wissenschaft der Rechenleistung...

05.11.2014

Genomics, Peronalised Medicine, Molecular Modelling: Informatik und Life Sciences kommen sich immer näher. Dabei gehört die Schweiz, anders als in der Enterprise- und Consumer-IT, zu den führenden Wissensstandorten der Computational Life Sciences.
Dennoch rechnet Torsten Schwede nicht mit einer überbordenden Bioinformatik-Startup-Welle. Warum, erklärt der Professor für Struktur- Bioinformatik am Biozentrum der Universität Basel und Mitglied des Vorstands des SIB Schweizerischen Institut für Bioinformatik im Interview mit i-net.

Zunächst ganz konkret, was alles subsumiert sich unter dem Begriff Bioinformatik?
Torsten Schwede*: Ich verwende den Begriff Bioinformatik nur noch selten. Wir sprechen meistens von «Computational Life Sciences» oder «Computational Biology». Bioinformatik hat zwar einmal mit der Organisation von Sequenzdaten und Sequenzanalyse begonnen, aber eine enge Definition macht eigentlichen keinen Sinn mehr - dafür ist der Bereich zu interdisziplinär geworden. Heute haben fast alle Bereiche der Life Sciences einen «computational» Ableger, und die Themen reichen von Molecular Modelling, über Big Data und Systembiologie, Clinical Bioinformatics bis hin zu Anwendungen im Bereich der personalisierten Medizin. Am SIB Schweizer Institut für Bioinformatik ist eigentlich jede Arbeitsgruppe willkommen, die computergestützte Methoden zur Anwendung in den Life Sciences entwickelt.

Was unterscheidet einen Bioinformatiker von einem Informatiker?
Etwas überspitzt formuliert, bei uns treibt die wissenschaftliche Fragestellung im Gebiet der Lebenswissenschaft die Methodik. Wenn ich eine Frage mit dem einfachsten Algorithmus beantworten kann, dann bin ich glücklich und kümmere mich nicht mehr weiter um die Informatik, sondern um die Fragestellung. In den Computerwissenschaften sind Innovationen in Algorithmen und Technik Ziel der Forschung, und oft finden sich im Nachhinein Anwendungen in verschiedensten Arbeitsbereichen.

Ein Bioinformatiker ist also eher ein Biologe?
Ja, das kann man so sehen, und an der Universität Basel ist die Bioinformatik auch ein Teil des Biozentrums. Früher hatten die meisten Bioinformatiker einen naturwissenschaftlichen Hintergrund wie Physik, Biologie oder Chemie. Vor ein paar Jahren haben wir an der Universität Basel einen Bacherlorstudiengang in Computational Sciences eingeführt. Diese Ausbildung wurde durch eine Zusammenarbeit von Mathematik, Informatik, Physik, Chemie und Biologie entwickelt und bietet ein breites Grundlagenstudium, wobei im zweiten Jahr eine Spezialisierung auf eine der Hauptrichtungen erfolgt. Ziel ist, dass Bachelor-Absolventen dann immer noch die Wahl haben zwischen einem Master in Informatik oder in der gewählten naturwissenschaftlichen Vertiefung Biologie, Chemie, Numerik oder Physik. Wichtig aber ist, dass der Bioinformatiker etwas von beiden Welten kennt.

Das klingt sehr anspruchsvoll – sind das nicht sozusagen zwei Studiengänge in einem?
Der Brückenschlag ist in der Tat äusserst anspruchsvoll und die Absolventen dieses Studiengangs sind absolute Spitze.

Das heisst wohl auch, Sie werden nicht gerade von den Studenten überrannt?
Es gibt ganz klar einen «War for Talents». Gute Studenten können sich heute aussuchen, wo auf der Welt sie studieren wollen. Auf PhD-Ebene rekrutieren wir denn auch international. Die Schweiz und Basel haben dabei weltweit eine sehr gute Ausstrahlung, und in der Bioinformatik gehört die Schweiz zu den drei top Destinationen weltweit. Global gesehen hat die Schweiz die höchste Dichte von Bioinformatikern.

Dennoch haben wir das Problem, dass es in den sogenannten Mintfächern an Nachwuchs fehlt?
Man müsste in der Schule ansetzen: Die wenigsten Maturanden haben eine klare Vorstellung, was ein Wissenschaftler im Alltag so macht und was genau hinter der Informatik steckt. Das Bild vom Biologen, der auf der Wiese sitzt und den Kaninchen beim hoppeln zusieht, trifft einfach nicht zu und muss sich ändern. Zudem sollte man auch vermitteln, dass Naturwissenschaftler gesuchte Leute sind. Soweit ich weiss, haben wir bisher noch keine arbeitslosen Bioinformatiker produziert.

Viele Bioinformatiker arbeiten in der Westschweiz – warum?
Das SIB Schweizerische Institut für Bioinformatik wurde ursprünglich in Genf gegründet, und Swiss-Prot, die weltweit grösste Wissens-Datenbank im Life Sciences-Bereich, hat ihren Sitz in Genf und Lausanne. Diese Datenbank wird vom Bund und von den US National Institutes of Health (NIH) unterstützt und ist für Wissenschaftler der ganzen Welt die Referenzdatenbank für Proteine. Swiss-Prot ist auch der Grund, dass 1998 das SIB gegründet wurde als der Schweizerische Nationalfonds beschloss, die Pflege von Datenbanken nicht mehr zu unterstützen. Daraufhin erhielten wir tausende von Zuschriften aus der ganzen Welt, die sich dafür einsetzten, dass Swiss-Prot bestehen bleibt - auch grosse Pharmafirmen boten Geld an. Durch die Gründung des SIB wurde dafür gesorgt, dass die Datenbank öffentlich blieb. Heute sind mehr als 50 wissenschaftliche Arbeitsgruppen aus der gesamten Schweiz Mitglied im SIB, und über 600 Wissenschaftler arbeiten an Schweizer Universitäten und ETHs im Bereich der Bioinformatik.

Die Datenberge in den Life Sciences steigen exponentiell an, was ist der Auslöser?
Die Anforderungen an die IT Infrastruktur sind praktisch in sämtlichen Gebieten der Life Sciences massiv angestiegen. So haben zum Beispiel unsere Kollegen am Biozentrum jüngst ein neues Mikroskop gekauft – dieses kann pro Tag zwei Terabyte Daten erzeugen. Wir sehen ähnliche Entwicklungen im Bereich der Genomics und anderer Hochdurchsatzverfahren. Moore’s Law besagt, dass sich die Rechenleistung der Prozessoren alle 18 Monate verdoppelt. Seit ungefähr 2007 reicht dies nicht mehr aus, um mit der Datenproduktion in der Wissenschaft Schritt halten - das Datenwachstum in der Lebenswissenschaft läuft der Rechenleistung davon. Deshalb brauchen wir neben einem Ausbau der IT Infrastrukturen auch schlauere Konzepte und Algorithmen. Und genau da kommen die Bioinformatiker ins Spiel, von der Planung der Experimente über die Analyse der Daten bis zur Modellierung der Systeme basierend auf den Ergebnissen.

Das heisst auch, hier gibt es ein grosses Feld für Innovationen. Warum gibt es dann nicht mehr Bioinformatik-Startups?
Unsere Studenten beschäftigen sich hauptsächlich mit wissenschaftlichen Problemen und möchten auf dieser Ebene ihren Beitrag leisten. Und wenn unsere Studenten Startup-Ideen haben, dann liegen diese häufiger im wissenschaftlichen Bereich und weniger in der Informatik, also etwa in der Molekularbiologie oder in medizinischen Anwendungen.

Wird es irgendwann einen Hersteller einer Bioinformatik-Standardsoftware geben?
Ich sehe momentan keine Anzeichen für eine kommerzielle «Standardsoftware» für Bioinformatik - in vielen Fällen sind wir noch weit von «Standard Workflows» in der Interpretation der Daten entfernt. Die experimentellen Technologien entwickeln sich sehr schnell, und die Entwicklung neuer Methoden und Algorithmen ist ein spannendes Forschungsgebiet. Ich glaube, wir werden auch in Zukunft ein Biotop verschiedener Lösungen und Tools einsetzten. Die wichtigsten Programme in der Bioinformatik sind heute Open Source. In meinem eigenen Arbeitsgebiet sind die akademisch entwickelten Software Tools innovativer und leistungsfähiger als kommerzielle Lösungen. Wichtig sind dabei Standards, die einen reibungslosen Datenaustausch ermöglichen.

Bioinformatik lässt sich also gar nicht kommerzialisieren?
Doch, aber in den meisten Fällen kommt der «added value» in unserem Bereich eher aus Knowhow und Services als dem Verkauf von Software. Es gibt eine ganze Reihe erfolgreicher kommerzieller Anwendungen, wie zum Beispiel der erste nicht-invasive pränatale Test für verschiedene Trisomien in der Schweiz, für den die Bioinformatik von unseren Kollegen am SIB Lausanne entwickelt wurde. Und mit Genedata haben ja eines der erfolgreichsten Bioinformatik Unternehmen direkt vor Ort hier in Basel.

Könnte das Potenzial nicht grösser sein?
Ich denke es gibt ein sehr grosses Potential in diesem Bereich und der Markt entwickelt sich schnell. Aber gerade bei den daten-getriebenen Projekten - etwa im Umfeld von personalised health - spielt die Regulierung keine unwesentliche Rolle. In Ländern wie der Schweiz mit etablierten rechtlichen Strukturen ist der Einstieg für neue innovative Lösungen oft nicht ganz so einfach. In sogenannten «Emerging Markets» dagegen sind die Eintrittshürden sehr viel geringer, und wir sehen in diesen Ländern eine regelrechte Goldgräberstimmung. Es bleibt abzuwarten, welche dieser Ideen sich am Ende als echte Innovationen im Gesundheitsmarkt durchsetzen werden.

Interview: Thomas Brenzikofer und Nadine Nikulski, i-net

*Torsten Schwede ist Professor für «Structural Bioinformatics» am Biozentrum der Universität Basel und Mitglied des Vorstands am SIB Swiss Institute of Bioinformatics. Als Leiter von «sciCORE» ist er für die Organisation der wissenschaftlichen IT Infrastruktur an der Universität Basel verantwortlich.

 

report Life Sciences

Santhera licenses Polyphor cystic fibrosis drug

15.02.2018

report Life Sciences

Roivant invests in fight against diabetes

12.02.2018

report Life Sciences

«With the innovation park, the life sciences hub of Northwest Switzerland will secure its ...

09.07.2014

Professor Joachim Seelig has been Professor of Biophysics at the University of Basel since the inception of the Biozentrum and is still actively engaged in research. He is also on the board of the SIP NWCH association (Swiss Innovation Park of Northwest Switzerland) and is Head of the i-net Technology Field of Life Sciences. In an interview with i-net he speaks about the future of the life sciences and explains why the SIP NWCH is important for Basel as a research center.

The pharmaceutical hub of Basel - and Northwest Switzerland - is undisputed today. Will this still be the case in 30 years?
Joachim Seelig*: It’s natural to wonder what will be in 30 years’ time. When I came to Basel 40 years ago, there were only chemical companies here. In the big four of Ciba, Geigy, Sandoz and Roche, the research heads were qualified chemists. Today these positions are occupied by molecular biologists or medical specialists. The chemical industry has been transformed in the last few decades into a pharmaceutical industry. Clariant is still a chemical company, and the agrochemical company Syngenta has its headquarters here, although they are far less deeply anchored in the region than Roche and Novartis. So when we look back, we see that Basel has changed a lot as a research center, and this change will also continue in the next 30 years.

What part did the Biozentrum of the University of Basel play in this development?
The Biozentrum brought together various sciences, such as chemistry, physics, biochemistry, structural biology, microbiology and pharmacology. The founding fathers of the Biozentrum had an inkling of the revolutionary changes to come from biophysics and molecular biology, it was hoped that the collaboration of these various disciplines could lead to something completely new. I believe it was a very shrewd move to bring these different fields together, and it has indeed also had some important results.

And where does the Biozentrum stand today?
Today, the focus is very much on fields such as neurobiology and microbiology, while biophysics and pharmacology take more of a back seat. This may well make sense and bring majors successes. But my personal interest goes in other directions.

So where should the focus be instead?
For the input on the Swiss Innovation Park of Northwest Switzerland, interviews were held with around 30 people from the life sciences with the aim of establishing what subjects will play an important role in the future. Three subject areas were identified in the process. Firstly, there is Biosensing, which links biology and electronics - so-called electroceuticals, for example, are pills that do not deliver their active substance until they arrive at a predetermined site in the body. The second subject area is Biomaterials – an example here could be a seed in which every grain is packed in an energy package, which even provides nutrition and develops when it is sown in dry conditions. The third subject area is Large Number Crunching - the ever more personalized medicine is leading to huge volume of data; so methods need to be developed that support the doctor in efficiently analyzing and evaluating the data.

How well positioned is Northwest Switzerland in terms of these three megatrends?
It has to be realistically acknowledged that we are not very strong in almost all three areas. It is precisely this that the Swiss Innovation Park Northwest Switzerland, which will start up at the beginning of 2015 in Allschwil, is designed to change.

Are there already concrete projects?
Yes, the research project Miracle of Hans-Florian Zeilhofer and Philippe Cattin from the Department of Biomedical Engineering in the Medical Faculty of the University of Basel will be the first sub-tenant. The Werner Siemens Foundation, based in Zug, will support this project for five years to the tune of 15.2 million francs in total. The aim of the project is to miniaturize laser technology for endoscopic surgery. Many areas, such as robotics, imaging and diagnostics, sensor technology and micromechanics, play a role in this project. Roughly speaking, it is a medical technology project in which electronics, robotics, imaging and medicine come together.

How big will the innovation park be in the future?
It is assumed that 1000 people and later perhaps 2000 people will be employed there. This critical mass is essential. A role model here could be the technology park in Eindhoven. Ten years ago, Philips opened its research center there with about 2000 employees for collaboration with external groups and companies. Today around 8000 people work there, and sales of around a billion francs are generated. Many new companies have settled there. The engagement of companies such as Roche, Novartis, Actelion and Syngenta will be crucial for the SIP NWCH. But of course outside companies and start-ups have to be attracted.

The University of Basel is not regarded as very innovative; does something not have to happen there?
I cannot let this statement stand unchallenged. Only recently a study was conducted on how efficiently a university works – and the University of Basel came out of this very well. The University of Basel is a full university. The natural sciences represent only a small part, i.e. at most around 2000 of the 12,000 students in total. So the figures of Basel University cannot be compared directly with the ETH or EPFL, which can concentrate entirely on technologies. At the Biozentrum we are engaged mainly in basic research, while applied research is left to others. Nevertheless we have generated a number of spin-offs. For example, Santhera and 4-Antibodies had their first laboratories in the Biozentrum.

What could be done to get more spin-offs in the region?
Attractive conditions must be created in the innovation park, and scouting ought to be institutionalized at the university, so that more projects are developed. I think we are ideally situated here in Northwest Switzerland. The innovation potential in Basel at least is huge, and there are already many start-ups that are doing outstanding work.

Are there issues that Northwest Switzerland could miss out on?
One point that is rather underestimated in Basel is the influence of computer science and the internet on biology and the life sciences. When it comes to information technology we certainly have some catching-up to do. Personally I believe in a stronger link between biology and electronics. I already endeavored some years ago to establish a department for bioelectronics at the university, but I was unable to push it through. But in the innovation park it is essential that we establish this link. It is important to attract the right talents. It is not only Google that should be attractive for really good IT specialists in the future, but also companies such as Roche and Novartis.

You have been involved in i-net as Head of the Technology Field Life Sciences for some years – what role should, can, ought i-net increasingly play in this field?
Basically people are grateful for and in many cases also excited by what i-net is doing for them. As a neutral link between the various actors, i-net can and will also play a major role in the Swiss Innovation Park in future. The life sciences companies are experiencing frequent personnel changes due in many cases to the global operations of these companies. It is becoming ever more difficult to find contact partners who have the authority to make decisions and at the same time have a profound knowledge of our region. The decision makers in the private sector are too tied up in the requirements of their jobs to find time for honorary activities in important bodies in our region. Life in the private sector has become faster and more global, and the local and regional networks suffer as a result. It is therefore important that a professional organization in the shape of i-net takes on this role and institutionalizes it.

Interview: Stephan Emmerth and Nadine Nikulski, i-net

*Professor Joachim Seelig was one of the first researchers of the Biozentrum at the University of Basel and was Head of this Department between 1997 and 1999 and also from 2000 to 2009. He is a member of the board of the SIP NWCH association (Swiss Innovation Park Northwest Switzerland) and serves in an honorary capacity as Head of the i-net Technology Field Life Sciences.

report Invest in Basel region

Zoetis relocating its Swiss office to the canton of Jura

07.02.2018

report Life Sciences

Idorsia moves forward with product candidates

06.02.2018

report Life Sciences

Helmut Kessmann: «Biotech can be a real roller coaster ride»

06.03.2014

Helmut Kessmann has been involved in the life science startup scene on the Rhine from the beginning. Today, the native from North Germany is Head of Business Development at Polyphor. Previously, he was co-founder of Discovery Technologies and a member of the executive management of Santhera, both IPO companies.

In the interview with i-net he talks about the development of the Life-Sciences-Standorts Basel and the success factors for biotech startups.

Mr. Kessmann, how do you rank Basel as a location for biotech companies?
North Western Switzerland is one of the best locations for biotech startups globally and in Europe amongst the top three. However, we must not rest on our laurels; otherwise we risk ending up back where we were in the early 90s.

Wasn’t Basel already a pharmaceutical and chemical city at that time?
Yes, but no one wanted or could establish a biotech startup company here. The normal career path of people was that they joined one of the large corporations like Ciba, Sandoz, Roche, after studying and remained there until they retired. Then, in 1996, the merger of Ciba and Sandoz to form Novartis happened and suddenly there was a very active and successful biotech scene. This transpired within a few years - an experience that still fascinates me today.

Did you immediately jump on the bandwagon?
I was employed by Ciba-Geigy, but I have already played with the idea for a few years to start my own business. At that stage no one was willing to finance projects in Basel. This changed immediately after the merger of Ciba and Sandoz in 1996 when the Novartis Venture Fund was founded. Suddenly we were in the game. Discovery Technologies was among the first startups in which they invested. Our advantage was that we had a complete business plan in our pocket.

The Novartis merger was therefore the trigger for the startup scene in Basel?
Yes, but that alone was of course not enough. A fund needs to be managed by the right people. Jürg Meier and Ruedi Gygax were exactly the right people. In addition, there were many more important initiatives in the regions. If you summarize you’ll see that, in just two years, more than 20 companies were in the starting blocks, ready to move. Since then, a lot has happened and now there are extremely successful companies such as Actelion, Basilea, Evolva and Polyphor. More have since been acquired such as Speedel or Glycart. Today, there are not only many ways to gain access to funding, but also support networks such as that of i-net innovation networks. Without the positive environment for Biotech startups the establishment of a new company is very difficult. Also, one should not forget that globally there is active competition for new companies.

But Discovery Technologies, co-founded by you, then relocated to the USA?
Not quite, we opted for the IPO to go to the US, but the operational activities remained and continued unchanged in Allschwil. For this purpose we merged in 2000 with a US chemical company and created Discovery Partners Ltd. headquartered in San Diego. I think our company was one of the last with a successful IPO before the crash in the fall of 2000. Then the market lost 75 percent of its value in just a few months. Fortunately, Discovery Partners was profitable before the IPO and did not have to rely on further funding. Later, Discovery Partners became Infinity Pharmaceuticals through another merger, which is still successful today, especially in drugs for oncology.

Your next venture, Graffinity, did not proceed exactly as planned?
I had learned that investing in the life sciences sector is done in waves and the preferred areas for investors can quickly change. With Discovery Technologies, we were able to ride on the height of the investment wave in the late `90s. However, Graffinity in Heidelberg, found itself at the end of this cycle, even though the technology was very innovative and actually fitted the needs of the "genomic era" perfectly. Thereby, we could record 30 million euros in April 2001, which was at least the second biggest round of funding in Germany that year. But only months later, and as a result of the biotech market crash, the interest of the investors in "platform companies" decreased to zero and people wanted to see clinical products.

How did you continue with Graffinity?
We had to be creative. After some searching we found an ideal partner namely MyoContract located in Basel. MyoContract was the first spin-off of the Biozuntrum in Basel and was established due to the great vision and initiative of the founder and CEO, Thomas Meier. The company had a product candidate but no money, and we had money but no product candidates. The result was Santhera. Graffinity was leached out of the new company through a management buyout and now supplies the old technology to the service business. Thereby Graffinity could survive without further venture capital.

But after the great start Santhera is still waiting for the breakthrough?
Biotech is rarely straightforward, but I am convinced that Santhera will also be commercially successful. Their focus on rare diseases, for which there is virtually no treatment, was correct in any case. In 2006 the company made a successful IPO and we received outstanding support from investors, researchers and patient organizations. Unfortunately, the most important product demonstrated later in the clinical Phase III that it did not have the effectiveness we hoped it would have. At one stage over 80 percent of the goodwill was gone. But that is how it is in biotech - a real roller coaster ride.

Was there a Plan B?
Yes, the company is currently trying to obtain the European market approval for the treatment of sudden blindness, a rare hereditary disease. The decision will probably be made in 2015. For me, personally, there was not much to do at Santhera in 2011 and I accepted an offer from my present employer, Polyphor. I have been the Head of Business Development since 2011.

How do you see the local biotech startup scene today?
We have already achieved a lot, but I would like to see many more young companies. Basically, Biotech is one of the most profitable investments, but there are big ups and downs. Many investors show interest - but there is also uncertainty. This is manifested in the new financing models. Private capital plays an increasingly important role. In Polyphor, investments were made almost exclusively by individuals. These are usually wealthy individuals from the surrounding area with a great affinity for pharma.

What is the most difficult phase for a startup?
Once the effect of a drug in humans is demonstrated, the financing is often easier, although you then really need large amounts of money. At this time good deals with interested pharmaceutical companies are also usually possible. It is very difficult earlier, as well as between the early pre-clinical development and proof of concept phases. Here more money needs to flow and this is where the private investor plays a key role - not only in Switzerland. In Germany, for example, a large part of all biotech investments were made by three individuals: SAP founder Dietmar Hopp, and the brothers Thomas and Andreas Strüngmann who sold Hexal to Novartis. Nevertheless, another early-phase innovative fund with an investment strategy similar to the Novartis Venture Fund of the `90s would be very helpful.

What alternative funding models are currently becoming important?
Non-dilutive financing, which means you acquire financing without relinquishing shares in the company, is making its mark. These include, for example, the US Department of Defense and the National Institutes of Health, which are no longer bound to their investments in the United States. Local companies such as Evolva, Santhera and Basilea have already benefited. Patient organizations also play an increasingly important role as they have lots of money. The French Association for muscle diseases, the Association Française Contre Les Myopathies, has an annual budget of nearly 100 million Euros as a result of their famous Telethon. Also joining are organizations such as the Cystic Fibrosis Foundation in the US or the Bill & Melinda Gates Foundation, which has already invested billions, especially in the research of drugs for tropical diseases. The extent of these investments did not exist 10 years ago.

So, is the philanthropic sector strengthening?
Yes, the trend towards alternative financing models, including the Venture Philanthropy (VP) model, is clear. However, little is known about the latter in the biotech scene. Although it is profit-oriented work, in this financing model the profits are reinvested in non-profit organizations for research. In other words, the donors of these funds aim to keep their assets, but not to increase it such as has been customary, but to support a charitable cause. The European VP Association recently had a meeting in Geneva with 700 participants and I was impressed by the professionalism and presence of many bankers and venture capitalists who wanted to learn about this concept or are already active with VP models.

Would Venture Philanthropy also be an approach for North Western Switzerland?
Why not, after all there are already many biotechs that have received funding from such alternative models. It will however not be sufficient for the next wave of startups here in Basel. It also requires an intelligent infrastructure, better early-stage financing, and support organizations and networks such as i-net. It would be a shame if we now just await the next crisis; if it happens we must be one step ahead. Today we can operate from a position of strength and we must exploit it.

Interview by Christian Walter and Thomas Brenzikofer

A short CV of Helmut Kessmann can be found here

report Life Sciences

Novartis subsidiary certified as Top Employer

05.02.2018

report Life Sciences

Genedata paves way for breakthrough

02.02.2018

Cookies

BaselArea.swiss uses cookies to ensure you get the best service on our website.
By continuing to browse the site, you are agreeing to the use of cookies.

Ok