Innovation Report

 
report Precision Medicine

“Momentum for blockchain in healthcare is growing in Basel”

03.12.2018

Marco Cuomo and Daniel Fritz from Novartis got engaged in blockchain two years ago. Today, their aim is set high: With other pharma companies under the Innovative Medicines Initiative, they formed a “Blockchain Enabled Healthcare” program, due to kick off in 2019. The program that they presented at the Blockchain Leadership Summit in Basel – Switzerland’s largest conference in this field - wants no less than to define how blockchain is applied in healthcare.

BaselArea.swiss: You both work for Novartis that is known for pharmaceutical products but not for technology. How come you started to explore the possibilities of Blockchain in the first place?

Marco Cuomo: We got curious about blockchain and wanted to know which problems we can solve with the technology. A handful of interested people had an informal meeting, we formed a group and basically got to the essence of blockchain. That started two years ago.

What did you find?

Marco Cuomo: First of all we found use cases to learn more about it. This is how the supply chain got on our radar because Blockchain is applicable to tracking and tracing. We involved Dan who is our Supply Chain Domain Architect to build a supply chain from the manufacturer to the pharmacy with LEGO robots…

Daniel Fritz: …where we integrated IoT sensors for temperature and humidity as well as a counterfeit product check. We learned for ourselves about the power of blockchain and what is possible.

Marco Cuomo: Our LEGO demo clearly helped to illustrate our point internally as well as externally. We also quickly realized that other pharmaceutical companies must have the same discussions. So we brought other companies to the table.

Why did you not just develop something on your own?

Marco Cuomo: Of course, you can have for example your own cryptocurrency – and then what? To exchange it, you need other parties who use the same cryptocurrency as you do. No, blockchain is not just a new technology that you learn, implement and benefit from. The key feature is to transfer something valuable from one party to the next. Take the supply chain of pharmaceutical products that involves the manufacturer, the distribution center, wholesale, pharmacy, doctor and hospital. Here, blockchain starts to make sense. 

How so?

Marco Cuomo: With blockchain, you do not have to change any supply management system on your side. Instead, you create a kind of common ground. You do not need an intermediate as blockchain is taking that role. We tend to say that it is a team sport because everybody has to play by the same rules.

What is in it for the life sciences industry?

Daniel Fritz: When we show and explain what blockchain is about, we not only cover the basics. Instead, we also look on what we could potentially design as a solution to build upon the regulatory framework. People think, wait, we can even go beyond the law and uncover some business value. I think most people can quickly see that blockchain offers many benefits over the existing technologies that we have in place.

Marco Cuomo: What is in it is efficiency which comes down to saving money, be faster and more secure. Electronic records can be transparently shown in the blockchain. If something fails in the cool chain, everybody can see what happens immediately. Now you wait till a product arrives at the target to then find out that it is flawed and finally start the process for a resend. With blockchain the flawed product never even has to leave the manufacturer.

Daniel Fritz: With other supply chains it is similar. People want to buy organic food – how do you know it is bio? With blockchain, we can guarantee the provenance of a product and remove or reduce counterfeits from the supply chain. This benefits the industry and the patients.

Marco Cuomo: Speaking of patients: It is the holy grail to bring patients in control of their data. Today the data sits in the different silos, with the hospitals, with physicians for example. With the blockchain, we think there is the potential to open that up so that patients can decide who sees my data.

Where do you see other advantages of Blockchain based healthcare?

Marco Cuomo: Our CEO Vas Narasimhan has the vision to create a medicine based on data only, from real world evidence. Blockchain can help to track and trace the data to guarantee its proper provenance. Another opportunity are data marketplaces where you can offer your data to pharmaceutical companies and researchers. Blockchain could help with that. Where normally it would take time to build up the trust for such an exchange of very sensible and valuable data, there is no need for that with blockchain. Novartis hopes that we can use this data to create new medicine in the future. We are also looking into third party risk management.
How can we make sure that our suppliers comply to our labor and safety rules? Why should we have the same audit ten times a year instead of once? Why should these assessments not be owned by the supplier – if we are guaranteed that the supplier is not manipulating them?

You started two years ago as a small group. Where are you now?

Marco Cuomo: We realized that we need to define certain standards to lay the infrastructural ground for Blockchain in healthcare. That is why we submitted the project “Blockchain enabled healthcare” with the Innovative Medicine Initiative where Novartis is already heavily engaged with more than 100 projects. We convinced eight other companies to join: J&J, Bayer, Sanofi, AstraZeneca, UCB, Pfizer, Novo Nordisk, and AbbVie are part of it. The money comes half from the industry, the other half is from the EU, in total 18 million Euro for three years. Applications for the consortium that should include hospitals, labs, patients, SME and universities to work with us closed in October. After that, we will form a project together and start with it late next year.

What is blockchain enabled healthcare about?

Marco Cuomo: The main goal is to define standards to create a governance body that will last longer than the project itself. Like the W3C, the World Wide Web Consortium that is defining technical standards of the web, we hope to be the same for Blockchain in healthcare. Take the internet – it also needed someone who defined some standards so everyone could build on that. The same will happen here, hopefully. Imagine if Novartis was to implement their own blockchain and has to convince thousands of suppliers to use it. If the next company does the same, end-to-end product tracking becomes impossible for the parties involved. Why should doctors use our system or the other one? Also, the patient journey does not only include pills from Novartis. You need a standard.

How easy was it to convince the other companies to come on board?

Daniel Fritz: Some of the companies we asked jumped on board immediately. Others needed to understand our vision in more detail. So we had a lot of talks which were very positive as we were able to establish a high level of trust and collaboration within the consortium, which is really what blockchain is about.

In which ways did it help to be in Basel to start this journey?

Marco Cuomo: It started here and Novartis is leading it. All the companies and the academia we talked to form the initial approach to the program are close. It also helps to have a CEO who strongly supports digital initiatives and a CDO who sees the potential.

Daniel Fritz: Momentum for blockchain in healthcare is growing in Basel, in Novartis, and globally. It will benefit patients and the industry, but we have a lot of hard work in the consortium and with public partners to get there.

About

Marco Cuomo is Manager of Applied Technology Innovation and a Senior Digital Solutions Architect with Novartis. He started with Novartis in 2005 as a Business Informatics Engineer and gained a Bachelor of Science in Business Administration.

Daniel Fritz works as the Supply Chain Domain Architect at Novartis. Before that he was an engineer officer with the US Army and a Materials Manager. He studied at the US Military Academy at West Point and gained a Master of Business Administration from Duke University.

report ICT

Basel software developer raises new capital

06.12.2018

report ICT

Blockchain auf dem Weg in die Praxis

06.11.2018

report ICT

“A good network is power”

03.04.2018

Melanie Kovacs was frustrated by the IT teaching she got, and developed her own product – Master21. She attributes her success with this not least to her carefully maintained network, which has continued to grow in Basel. Melanie Kovacs and her fellow campaigners use the technology and innovation network “We Shape Tech” to promote diversity by making women working in the technology and innovation field more visible.

Ms Kovacs, you founded Master21 when you were 28. How did that come about?

As a co-initiator of the Aspire network for women startup owners, I’d met a lot of very interesting women. One of them was Valérie Vuillerat, the managing director of Ginetta. She offered me a job, and I took it. At the agency I was the link between clients and developers. I worked closely with the people from the technical area, but I didn’t speak their language. Then I went back to taking courses at the university. But this was dreadfully theoretical, boring front of class teaching, and I didn’t enjoy it at all. I was sure that anybody can learn programming, but I felt it had to be done differently.

So what is your company doing better?

We do exactly what I was missing at the time. We put people without a technical background in a pleasant atmosphere and use lots of practical exercises to give them sufficient competences and self-confidence in programming. Most of them are like me – they don’t necessarily want to embark on a new career, they want to work with developers on a solid basis. That’s why at Master21 you learn the fundamental terms and concepts and understand how design, front end, back end and databases fit together. Participants learn HTML, CSS, Javascript and Ruby and try out for themselves how object-oriented programming works.

How did the start-up process work out?

I started a pilot project for Master21 while I was still working at Ginetta. The fluid transition was ideal for me. My co-founder is responsible for the technical side and content, I’m responsible the business aspect. I’m very happy that he gave me the push I needed to start. I’m not sure I would have dared to found a company on my own. A few months ago, we hired a new employee. I find it very motivating if every initiative doesn’t depend on me and I can work with a team.

What do you most appreciate about being an entrepreneur?

I can set my own schedule for the day, I’m learning a lot and I work every day with bright, exciting people. I’m also seeing that my services are directly influencing the students. There have already been two cases where people met on the course and subsequently started a project together. It’s more difficult to find developers who like teaching and are good at it.

What happens next with Master21?

I’m currently participating in the Entrepreneurs’ Organisation’s Accelerator Programme, and I’m also working with a coach. Currently I’m not at all interested in a financing round, because I’d like to continue to grow independently of investors. I want the firm to develop, but at my own pace and with long-term prospects.

The company’s headquarters are in Zurich, you live in Basel. What happens where?

I’m in Zurich when I’m working at the Impact Hub and want to meet people. The courses have also been held there so far. In Basel I work on corporate strategy in my home office and write texts. If things get too quiet for me, I go to the “Unternehmen Mitte” establishment and work there, or I meet someone for lunch at the Markthalle. I think it's because there are so many expats in Basel that there’s a great sense of openness there.

How important is your personal network for the success of Master21?

My network is absolutely central. At the start, I emailed every single one of my contacts, told them about my new project and asked for feedback. I maintain my network by LinkedIn and email, and I go and have coffee with people regularly. I also go to events like TEDxZurich, and I’m active in We Shape Tech.

You’re an enthusiastic networker.

Yes, it’s easy for me. For many people networking has such a negative image. I’m not interested in collecting business cards; I want to get to know people. And I’d much rather talk to one person than quickly give my card to a whole lot of people. I really enjoy networking, because I can learn something from everybody. A couple of years ago I was just everywhere, including to promote my business. Now I find it boring if someone’s just presenting their pitch, and I’m better at choosing where I participate. I find networking particularly valuable if you can share your ideas on a joint topic with others in small groups.

You brought the initiative for diversity, the We Shape Tech network, which was previously already active in Zurich and Bern, to Basel. Why does Basel need this network?

Basel still has a lot of potential in the technology and innovation area. One indication of that for us was the way that we were welcomed with open arms. Our board member Elaine Skapetis is a developer at Adobe. The company supported us generously without hesitation with our first two Basel events. The hall at the launch event was filled to bursting, the response was just unbelievable. We offer people working or interested in the technology and innovation field the opportunity to share ideas and views and learn from each other. We follow a specific format here, where one person tells their story, a discussion is initiated, and there’s time for networking. Our goal is to connect people, communicate knowledge and ensure access to other organisations and partners. Knowledge and a good network are power.

What are the advantages of networks primarily aimed at women?

In Basel men are welcome at We Shape Tech as well. To promote diversity, you need both men and women. However, sadly, only a few men have taken advantage of the opportunity to date. The few men at the meeting have an experience which women often have, namely being part of a minority. If you have a group of just women, the atmosphere is more relaxed. I also see this in courses specifically for women at Master21. If women are just with other women, they trust themselves to do more. They ask questions which they wouldn’t if men were present, say more and are more confident than if there were men there.

About Melanie Kovacs
Melanie Kovacs founded Master21, where people interested in courses with practical relevance are introduced to the fundamentals of programming. Previously, she has founded the women’s network Aspire, and organised start-up weekends. She studied business administration at the Zurich University of Applied Sciences in Business Administration and the University of Madrid and completed a CAS in requirements engineering at the University of Applied Sciences, Rappers. Together with Aileen Zumstein and Elaine Skapetis, Melanie Kovacs brought the network We Shape Tech to Basel. The Movement in Diversity initiative offers a platform and community for people who want to make a difference in the hi-tech and innovation area. The organisation focuses simultaneously on communicating knowledge and promoting the exchange of ideas.

report ICT

Mit den Powercoders werden Geflüchtete in Basel zu Programmierern

30.10.2018

report Innovation

Basel insurtech wins international insurtech award

24.10.2018

report Precision Medicine

“Precision medicine is the best opportunity to reconfigure healthcare”

04.12.2017

After 20 years with the pharmaceutical company Eli Lilly, Bernard Munos set out to better understand pharmaceutical innovation – specifically what makes it possible and how to get more of it. Munos is now a Senior Fellow at Faster Cures, a Center of the Milken Institute, and the founder of the consultancy InnoThink, which advises biomedical research organizations on how to become better innovators. He also contributes to Forbes magazine, an American business publication. Munos travelled to Basel in October, on behalf of HKBB and DayOne to participate in the “Powertalk”.

Mr. Munos, precision medicine has been around for a couple of years. These days everybody seems to talk about it. Why is that?

Bernard Munos: The healthcare system is increasingly torn apart by powerful forces. On one hand, science is delivering amazing things such as protein therapeutics (peptides, monoclonal antibodies); cellular therapies (CAR-T); gene editing (CRISPR); and a growing array of technologies based on a molecular understanding of diseases. The only problem is that this is very expensive. In addition, the population is aging, and older people tend to get diseases that are costlier to treat. The result is nearly infinite demand for costly care, which is clashing with the limited resources available to fund it. But, as it turns out, precision medicine is the most promising opportunity to change the economics of pharmaceutical R&D, reconfigure healthcare, and deliver affordable care to all.

In other words: the current system is not built to distribute the benefits of the new technologies?

For decades, R&D was much simpler: We took a disease that we typically did not fully understand, threw a bunch of compounds at it and saw if something would work. If it did, you had a drug. This was crude, but not a bad strategy since it gave us drugs long before we understood the diseases they treated. Sometimes, however, it does not work. For example, we have thrown over 350 compounds at Alzheimer’s, but none has worked, and we still do not know what causes the disease. There’s got to be a better way, and that is precision medicine.

What will change with precision medicine?

Once we understand how diseases work, our capabilities are so powerful that we can often design a disease modifying molecule literally within months. Precision medicine, along with the technologies that enable it, will give us the insights we need to develop those drugs. But it translates into a smarter – and ultimately cheaper –  way to do science and develop drugs –which is why it will prevail.

What do we need to establish to get precision medicine taking up more speed?

According to the Food and Drug Administration, the number one impediment to innovation is the lack of natural histories for most diseases. This means that we do not have baseline data that describes the course of the disease, and therefore we cannot measure the improvement that a therapy would bring. It really limits our ability to innovate. Many diseases progress quietly for many years before they are diagnosed. Take Alzheimer’s or pancreatic cancer: by the time they show symptoms, it is too late for an intervention. Precision medicine will change that by collecting data while the diseases progress but the patients are asymptomatic. This will advance disease discovery and give us the knowledge we need to develop better therapies. Much of this will be enabled by new and inexpensive data-capture technologies such as biosensors, apps and other plug-in devices that are advancing very rapidly.

But first of all this means new investments – who is going to pay for all this?

At the moment, public companies spend US$110 billion per year on clinical research, much of which goes to collect data. This is an enormous amount of money, and companies gather indeed vast quantities of data, but they are limited in scope and often of mediocre quality. In 2014, the company Medidata Solutions ran an experiment to test the capabilities of biosensors. They assembled a couple hundred patients and equipped them with a few low-cost biosensors such as activity trackers and heart monitors. Over a couple of months, they collected up to 18 million data points per patient and per day. That data was later reviewed by regulators and declared to be “FDA-compliant”. One key point, however, is that its collection cost was trivial. Other evidence suggests that, by redesigning trials to leverage digital technologies, we can cut down the cost of data collection by as much as 80 percent. This is big enough to change the economics of clinical research, but it does more. It also enables better research. Today, drug trials focus on homogenous patient populations, because one needs to minimize the sources of variance. But the result is trials that do not represent very well the populations that we want to treat. Biosensors, on the other hand, can collect lots of data on larger populations, and statistical significance is usually not an issue. It is also high-frequency longitudinal data which gives us a much better picture of what happens to patients.

How will this change medicine?

Today, when someone comes down with Alzheimer’s, we don’t know when it started, or why, and therefore have no way to intervene on the course of the disease before it is too late. If we had data on pre-symptomatic patients, scientists could look back and pinpoint when the disease might have started and how it progressed. With such information, we could design better drugs and intervene earlier when the prognosis is better and treatment costs cheaper. It could potentially move medicine from treatment to prevention, but implementing it won’t be easy. Our whole healthcare system is designed to treat not prevent. Changing it will require a lot of retraining, but it’s the way to go.

Crucial will be the question who owns the data and who will have access to the data?

A key requirement of precision medicine is that data needs to be connected. It will be scattered over hundreds of databases, but they need to be interfaced so that they can easily be searched. Some of the data will be public, but much of them will be collected and controlled by the patients themselves. A majority of patients has signaled a willingness to share their data for legitimate research purposes, but whoever controls data will also control innovation. Patients hold values that are dear to them – such as transparency, openness, and affordability – and they will likely expect the recipients of their data to comply with these values. This will be a big change for the culture of R&D and will have significant consequences for the design of clinical research.

This will change the Value Chain – who will win, who will loose?

Precision medicine will bring some desirable changes: Historically pharmaceutical companies have generated their own data and competed on the basis on such proprietary data. Increasingly, however, data will become a commodity. For instance, the data from the “All-of-Us” million patient cohort that the U.S. National Institutes of Health is assembling will be in public access. There are numerous other large patient cohorts around the world that are being created and whose data will also be public. This will change the basis of competition. Scientists will increasingly work from shared, public data, and their performance will depend upon their ability to extract superior knowledge from the same data used by their peers

What does this mean for the Basel Life Science Cluster?

Big corporations struggle to generate enough internal innovation. The bigger they get, the greater the bureaucracy and the more regimented they become. This creates a climate that is less hospitable to innovation precisely at a time when large companies need more of it. To sustain revenue, they must access a source of external innovation that can supplement their own.  Relying on licensing, mergers or acquisitions does not work well, as companies seldom find what they want to buy at a price they are willing to pay. Innovation hubs such as BaselLaunch or DayOne are a better solution. They allow the local community to create shared infrastructure – such as incubators and support services – that can become a global magnet for entrepreneurs. They also give the local large companies an opportunity to mentor the startups and offer scientific support. For them, it is a way to seed the local ecosystem with innovation that they can harvest later on.  Basel is especially suited for this because innovation tends to blossom where cultures overlap. This has been a factor in the city’s past success, and it is an asset that can be leveraged again.

Do we have enough data scientists?

You certainly have them in Switzerland. Data sciences have long been a strength of Swiss education. It goes hand-in-hand with engineering, physics and other sciences in which Switzerland excels. It is also an important advantage since there is an acute shortage of data scientists around the world. Processing the big data flows discussed earlier requires much larger numbers of data scientists that we are currently training. In America, this has been identified as a critical workforce issue. Switzerland is in a stronger position.

Would an open data platform work like a catalyst?

Scientists flock to data. In all scientific projects, a huge amount of resources – as much as 80% – is spent on data collection and cleanup, which are seldom the most interesting parts. If Basel can offer rich data that is already curated, scientists will be able to accomplish much more while focusing on the part of their work where they really add value. Having data in open free access will also help attract researchers from other disciplines who currently do not engage in biomedical research – such as mathematicians and artificial intelligence experts. Such cross-pollination is a powerful catalyst of innovation.

About Bernard Munos
Munos is a Senior Fellow at FasterCures, a center of the Milken Institute, and the founder of InnoThink, a consultancy for biomedical research organizations. He regularly contributes to Forbes and is a board member and independent non-executive director of innovative healthcare companies.

Interview: Thomas Brenzikofer, Annett Altvater

report Invest in Basel region

How Baloise makes best use of Blockchain

23.10.2018

report BaselArea.swiss

Den Digitaltag in der Region Basel erleben

15.10.2018

report Precision Medicine

"In Switzerland, we often sell promising technologies too early"

05.09.2017

Ulf Claesson is a "serial entrepreneur". During the past 25 years, he has set up companies that have gone on to become firmly established in the market. In 2012, he joined Clinerion as CEO and shareholder. Since then, the company has positioned itself in the medical data field and recently entered into a partnership with British company Cisiv. Clinerion's software helps recruit patients for clinical trials run by major pharmaceutical companies – in real time. But the competition never sleeps. A growing number of competitors is now appearing, especially in the USA where there is no shortage of risk capital. In this interview for the Innovation Report, Claesson explains how the Basel-based healthtech company plans to maintain its leadership position.

Interview: Thomas Brenzikofer

Mr Claesson, what was behind your decision to get on board with Clinerion?

Ulf Claesson: Clinerion was originally an IT platform with a complicated name. Its founders hit upon the idea of building a large data hub for the pharmaceutical and healthcare industries. That was quite an ambitious idea. I reckon that the WHO or the Bill and Melinda Gates Foundation could possibly manage it. But a small company in Basel? As an IT person, I quickly saw how good the core technology was.  What wasn't clear, however, was the problem that the technology was going to solve. So we started working on that and felt our way slowly but surely towards the patient recruitment use case. Today, we are the only company in the world able to identify in real time from millions of patient data records those patients who are suitable for a specific clinical trial.

So you have aligned the company with a particular niche?

Yes, absolutely. When you are building a company, you must concentrate on solving a genuine problem. Our technology gives the customer clear benefits. Finding patients usually takes months, sometimes years. We cut this to weeks, or less. We ensure that a pharma company, hospital or contract research organisation already before the start of a clinical trial knows exactly where candidate patients are located and exactly how many there are. Depending on the goal, the study protocol can then be optimised as required. Because we avoid guesswork and identify genuine patients who meet the study criteria in this very moment, the study design is robust and risk is minimised. Not only that, but a study sponsor knows exactly where and how many of his "sites" he must place. Real-time information is particularly valuable for this. As soon as I activate a study protocol, the doctors involved are notified and can call their patients in.

Is it easy to convince hospitals to collaborate with Clinerion?

We were rather naive about this at first. From an IT perspective, it makes sense to do everything in the cloud. That is exactly what we tried to do, but most people were negative about it. We also found that attitudes to data protection, as well as the regulations themselves, vary considerably from one country to the next. These factors make a cloud solution virtually impossible to implement. Today, we are installing a hardware appliance within a hospital's IT infrastructure. The data therefore remains exactly where it is collected and it is as secure as all other patient data. We can also only access consolidated and aggregated meta information, which earns us the trust of decision-makers and the people using the system.

What exactly motivates hospitals to disclose their data?

We all basically share the same objective of providing relevant patients with drugs as soon as possible. We play a role in achieving this. The university hospitals are carrying out research to some extent for their own interests. We help them to carry out their internal studies more quickly. The pharmaceutical companies remunerate the hospitals for each patient who participates in a study. The doctors feel that participating in interesting studies is important. In our experience, the number of studies that hospitals are offered increases significantly as soon as they start working with us.

How many patients do you currently have access to?

We have access to 35 million patients via the hospitals. And we certainly need that many. The numbers can start dwindling rapidly depending on the symptoms you are searching for.

You operate mainly in emerging markets such as Brazil and Turkey.  Why is that?

With the exception of the UK, Europe is more cautious about taking part in clinical trials. By 2020, Turkey expects to have increased the EUR 50 million turn-over in clinical trials in 2014 to EUR 1.5 billion. In Brazil, they are even changing the law to make it easier for pharmaceutical companies to carry out more studies in the future. In clinical trials, it is important for all participating patients to receive the same standard of care. Participants in trials might therefore receive better care than usual. This applies to some countries in Eastern Europe, for example. For some patients, this can be an incentive.

Does your data acquisition prioritise emerging markets?

No, not exclusively. We are also well positioned in a number of European countries. But we can certainly do better. We would also like to expand our presence in India and Taiwan, for example. Great Britain is a key focus for us and our partnership with Cisiv will help here. We recently entered into a partnership with this UK company. Cisiv’s platform complements our screening programme perfectly.

It sounds like a data contest. How close is your main competition?

There are three competitors. But we are the only ones able to provide real-time results. Our competition in the USA, however, has access to much more capital. At the last investment round, one of our competitors raised 32 million dollars.

Do you find it difficult to compete with that?

It is certainly difficult for an ICT start-up in Switzerland to obtain those kinds of amounts. We are not completely dependent on external investment, however. We have a very loyal shareholder base and have sufficient funding, even though we are still a long way from being profitable.

Could a sale be on the cards?

Our vision is to provide patients with medicines. If we see that we can achieve this goal more quickly, we would be willing to consider it. But selling is not currently under consideration. I have already founded a number of companies. Some were sold too early, even though we could still have helped them progress through one or more growth phases. I am convinced that Clinerion will succeed in that regard.

Do you consider the lack of growth financing to be a problem for the Swiss start-up scene?

Most certainly. Good technologies tend to be sold off too early because their owners cannot find the money they need for the next major milestone, typically for the global expansion phase.  

What do you suggest?

Imitating Silicon Valley will get us nowhere. Also because costs there are unacceptably high at the moment. We really need to focus on our strengths. Just to give you one example: twice as many startups are established at ETH Zurich each year than at UC Berkeley. When universities foster a supportive environment, a start-up community develops all on its own. The students I meet at ETH are ambitious and full of energy. I also note, however, that many Swiss students prefer the security of working in a large corporation. We need a greater willingness to accept risk. We need to work on it.

How do you see innovation hub Basel?

We have good access to the sector here, and we can also recruit staff from neighbouring Germany. The labour market is therefore less competitive than in Zurich for example. We feel right at home here in Basel.

Interview: Thomas Brenzikofer and Annett Altvater

About Ulf Claesson
Ulf Claesson studied production technology at Chalmers University in Gothenburg and also gained a management degree at the University of St. Gallen. He worked for IBM and Hewlett-Packard, established spin-offs for various companies, and founded his own start-ups. In his lecture on "Technology Entrepreneurship" he passes on his experience as a "serial entrepreneur" to students at ETH. He is a member of the board of directors of various companies, the Foundation Board Director of the AO Foundation, and has been the CEO of Clinerion since 2012.

report ICT

See you @ Blockchain Leadership Summit in Basel

20.09.2018

report ICT

Allthings raises capital for PropTech platform

16.07.2018

report BaselArea.swiss

Investing in strengths – Swiss leadership in life sciences

15.05.2017

How can Switzerland and the Basel region maintain their international leadership role in life sciences? As part of the Biotech and Digitization Day, Federal Councillor Johann Schneider-Ammann visited the Basel region to discuss current trends and challenges with a high-ranking delegation from politics, business, research and start-ups.

The importance of life sciences for the Swiss economy is enormous. Last year, the sector was responsible for 45% of total Swiss exports. Similarly, the majority of new relocations are active in the healthcare sector. Switzerland is said to a leading life sciences location in the world with the Basel region as its engine.

It is against this backdrop that Federal Councillor Johann Schneider-Ammann, head of the Federal Department of Economic Affairs, Education and Research, was invited by BaselArea.swiss and digitalswitzerland to visit the Basel region as part of the Biotech and Digitization Day to discuss current trends and challenges in life sciences with a high-ranking delegation from politics, business and research.

The event was held at Actelion Pharmaceuticals and the Switzerland Innovation Park Basel Area in Allschwil in the canton of Basel-Landschaft. Federal Councillor Schneider-Ammann emphasised the significance of the region and life sciences industry: “The two Basels have a high density of innovation and successful companies, research institutes and universities. This fills me with pride and confidence. Pharmaceuticals and chemistry are rightly regarded as the drivers of innovation.” But Switzerland cannot rest on its laurels if it is to remain successful in the future; business and politics, science and society must all use the digital transformation as an opportunity, he insisted.

The event was organised by BaselArea.swiss, which promotes innovation and business development in the northwest Switzerland cantons of Basel-Stadt, Basel-Landschaft and Jura, and digitalswitzerland, the joint initiative of business, the public sector and science, whose aim is to establish Switzerland as a leading digital innovation location in the world.

Federal Councillor Schneider-Ammann is currently visiting Switzerland’s leading regions to get an impression of the effects of digitalisation on different business sectors and to talk about promising future concepts.

Supporting biotech start-ups

Life sciences are regarded as a cutting-edge sector with considerable growth potential. But competition among the different locations is becoming more aggressive as other regions in the world are investing heavily to promote their location and attract large companies. A central question of today’s event was: How can Switzerland and the Basel region maintain its leadership role in the face of international competition?

Given its major economic importance in life sciences and when measured against other leading locations worldwide, Switzerland has comparatively few start-ups in this industrial sector. With the launch of BaseLaunch, the new accelerator for healthcare start-ups, BaselArea.swiss and the Kickstart Accelerator from digitalswitzerland have taken a first step to changing this. However, in addition to the lack of seed capital in the early phase of a company’s development, there is also a lack of access to the large capital that an established start-up requires in order to expand. Said Domenico Scala, president of BaselArea.swiss and a member of the steering committee of digitalswitzerland: “We have to invest in our strengths. This is why we need initiatives like Swiss Future Fund, which aims to enable institutional investors to finance innovative start-ups.”

The importance of an innovative start-up scene for Switzerland as a centre of life sciences was also a topic for the roundtable discussion that Federal Councillor Schneider-Ammann held with Severin Schwan, CEO of the Roche Group, Jean-Paul Clozel, CEO of Actelion Pharmaceuticals, Andrea Schenker-Wicki, rector of the University of Basel, and others.

Digitalisation as a driver of innovation

The second topic at the Biotech and Digitization Day was digitalisation in life sciences. According to Thomas Weber, a member of the government of the canton of Basel-Landschaft, this is an important driver of innovation for the entire industry and is crucial to strengthening Switzerland as a centre of research.

In his speech, Federal Councillor Schneider-Ammann focused on three aspects: first, the creation of a new and courageous pioneer culture in which entrepreneurship is encouraged and rewarded for those who dare to try something different. Second, more momentum for start-ups by realising an initiative for a privately financed start-up fund. And third, shaping the role of the state as a facilitator that opens up spaces rather than putting up hurdles or bans.

In the public discussion round, in which representatives from research and industry as well as entrepreneurs participated, it became clear that digitalisation is changing life sciences. Everyone agreed that Switzerland has the best conditions to play a leading role in this transformation process. The basis for this are its powerful and globally actively pharmaceutical companies, its world-renowned universities and an innovation-friendly ecosystem with digitally driven start-ups from the healthcare and life sciences fields. 

digitalswitzerland wants to promote this, too. According to Nicolas Bürer, CEO of digitalswitzerland, healthcare and life sciences are key industries to making Switzerland the leading digital innovation location.

A further contribution can be made by the DayOne, the innovation hub for precision medicine. Launched by BaselArea.swiss in close cooperation with the canton of Basel-Stadt, it brings together on a regular basis a growing community of more than 500 experts and innovators in an effort to share ideas and advance projects.

report ICT

Die Zukunft der Softwareentwicklung ist agil

08.07.2018

report ICT

JELLIX IIoT Plateform, un pas de plus dans l’industrie connectée

03.07.2018

report ICT

Dr App – Digital transformation in the life sciences

30.11.2016

The future belongs to data-driven forms of therapy. The Basel region is taking up this challenge and investing in so-called precision medicine.
An article by Fabian Streiff* and Thomas Brenzikofer, which first appeared on Friday, 14 October 2016, in the NZZ supplement on the Swiss Innovation Forum.

So now the life sciences as well: Google, Apple and other technology giants have discovered the healthcare market and are bringing not only their IT expertise to the sector, but also many billions of dollars in venture capital. Completely new, data-driven, personalized forms of therapy – in short: precision medicine – promise to turn the healthcare sector on its head. And where there is change, there is a lot to be gained. At least from the investor’s point of view.

From the Big Pharma perspective, things look rather different. There is quite a lot at stake for this industry. According to Frank Kumli from Ernst & Young, the entry hurdles have been relatively high until now: “We operate in a highly regulated market, where it takes longer for innovations to be accepted and become established.” But Kumli, too, is convinced that the direction of travel has been set and digitalization is forging ahead. But he sees more opportunities than risks: Switzerland - and Basel in particular - is outstandingly well-positioned to play a leading role here. With the University of Basel, the Department of Biosystems Science and Engineering ETH, the University of Applied Sciences Northwest Switzerland, the FMI and the University Hospital Basel, the region offers enormous strength in research. It also covers the entire value chain, from basic research, applied research and development, production, marketing and distribution to regulatory affairs and corresponding IT expertise. The most important drivers of digital transformation towards precision medicine include digital tools that allow real-time monitoring of patients – so-called feedback loops. The combination of such data with information from clinical trials and genetic analysis is the key to new biomedical insights and hence to innovations.

Standardized nationwide data organization
In rather the same way that the invention of the microscope in the 16th century paved the way to modern medicine, so data and algorithms today provide the basis for offering the potential for much more precise and cheaper medical solutions and treatments for patients in the future. At present, however, the crux of the problem is that the data are scattered over various locations in different formats and mostly in closed systems. This is where the project led by Professor Torsten Schwede at the Swiss Institute of Bioinformatics (SIB) comes into play.

As part of the national initiative entitled Swiss Personalized Health Network, a standardized nationwide data organization is to be set up between university hospitals and universities under centralized management at the Stücki Science Park Basel. Canton Basel-Stadt has already approved start-up funding for the project. The standardization of data structures, semantics and formats for data sharing is likely to substantially enhance the quality and attractiveness of clinical research in Switzerland – both at universities and in industry. There is no lack of interest in conducting research and developing new business ideas on the basis of such clinical data. This was apparent on the occasion of Day One, a workshop event supported by BaselArea.swiss for the promotion of innovation and economic development and organized by the Precision Medicine Group Basel Area during Basel Life Sciences Week.

More than 100 experts attended the event to address future business models. Altogether 14 project and business ideas were considered in greater depth. These ranged from the automation of imaging-based diagnosis through the development of sensors in wearables to smartphone apps for better involvement of patients in the treatment process.

Big Pharma is also engaged
“The diversity of project ideas was astonishing and shows that Switzerland can be a fertile breeding ground for the next innovation step in biomedicine,” Michael Rebhan from Novartis and founding member of the Precision Medicine Group Basel Area says with complete conviction. The precision medicine initiative now aims to build on this: “Despite the innovative strength that we see in the various disciplines, precision medicine overall is making only slow progress. The advances that have been made are still insufficient on the whole, which is why we need to work more closely together and integrate our efforts. A platform is therefore required where experts from different disciplines can get together,” says Peter Groenen from Actelion, likewise a member of Precision Medicine Group Basel.

There is also great interest among industry representatives in an Open Innovation Hub with a Precision Medicine Lab as an integral component. The idea is that it will enable the projects of stakeholders to be driven forward in an open and collaborative environment. In addition, the hub should attract talents and project ideas from outside the Basel region. The novel innovation ecosystem around precision medicine is still in its infancy. In a pilot phase, the functions and dimensions of the precision medicine hub will be specified more precisely based on initial concrete cases, so that the right partners can then be identified for establishing the entire hub.

Leading the digital transformation
The most promising projects will finally be admitted to an accelerator programme, where they will be further expedited and can mature into a company within the existing innovation infrastructures, such as the Basel Incubator, Technologiepark Basel or Switzerland Innovation Park Basel Area.

Conclusion: the Basel region creates the conditions for playing a leading role in helping to shape digital transformation in the life sciences sector and hence further expanding this important industrial sector for Switzerland and preserving the attractiveness of the region for new companies seeking a location to set up business.

* Dr Fabian Streiff is Head of Economic Development with Canton Basel-Stadt

report ICT

Panalpina promotes digital technologies

26.06.2018

report Invest in Basel region

Rhine ports become digital pioneers

21.06.2018

report ICT

«As an entrepreneur you have to be a little paranoid»

07.10.2015

Adrian Bult, the Basel private investor and member of various boards of directors, is an acknowledged expert with an in-depth knowledge of Switzerland’s ICT sector. Since March 2013, he has been engaged on a voluntary basis as head of the i-net Technology Field ICT. In this interview he explains that makes entrepreneur types and why he is convinced that Switzerland could quite easily produce the next Google.

What’s it like being a Business Angel in Switzerland?
Adrian Bult*: Basically I have an exciting life. I am constantly confronted with new ideas and incentives. I have to do with young entrepreneurs, and that is very enriching for me.

Do you also mean that in a literal sense?
Certainly, because I am primarily interested in the content and people. So I also don’t see myself as an investor but as an interested developer of companies.

You invest above all in ICT – are there enough interesting cases?
Yes, in my view there are an awful lot of good ideas in Switzerland and a distinct sense of enterprise. But most is privately funded. In this respect Switzerland is unique. There is probably no other country anywhere in the world where so much in the way of financial resources flows into innovation from private investors or companies. This is also different from Silicon Valley, where enterprise is driven by a highly professional venture capital industry.

So you also have to lower your sights accordingly in Switzerland?
Yes, and Switzerland also has a small domestic market. This therefore begs the question of ambition right at the outset of any start-up. In the B-to-C segment, if you don’t step up to the plate with a global vision, then you usually have little chance from the start. Switzerland is therefore above all a country with lots of interesting niche providers – especially in the B-to-B segment.

What is lacking in most of the cases you encounter?
Switzerland has a distinct pharmaceutical, engineering and chemical culture. But a good sales and marketing culture is also important for the success of a start-up. In this respect, other countries - especially the USA, for example - have a head start. They give much more emphasis to marketing. Young technology-driven entrepreneurs in particular believe the best product will succeed. But that is often just not the case. In most cases it is the product that is marketed best that comes out on top.

But in Silicon Valley aren’t companies still being founded by techies and nerds, not by marketing people?
That’s true, but marketing has the same importance as engineering operations. If you tell someone at a party that you’re a salesman, then the reaction is usually very muted. This has to do with the fact that, in Switzerland, understatement is seen as a great virtue. Self-marketing is nothing like as important as it is in other cultures. That’s something we Swiss have to learn.

Does a start-up founder without salesman qualities have no chance?
Absolutely. How else does he want to attract investors for his project? This is where it starts. And then you also need a certain ambition. There are founders who focus on the global market from the outset. In Switzerland, this is immediately greeted with smiles. But basically this is the right attitude in order to reel in the first customer. This is also a typical approach of many technology-driven start-up founders in Switzerland: pick up the phone and work through a list of leads. Most people feel this is beneath them.

Are there other patterns you often come across in young Swiss entrepreneurs?
Something I always see especially in start-ups is an underestimation of the time that is needed to achieve the desired results. If you underestimate the time and the funding is linked to this time axis, then you have to react in good time when you see that you are going to need longer. Otherwise you run out of steam.

So you should always plan for twice as much time and money as you think?
No, that would be wrong. I’m in favour of setting a tight deadline and keeping funds short. But you have to react in good time if you see that things are getting tight. You need the pressure – otherwise you don’t move.

Can Switzerland and Europe ever produce an ICT giant?
Why not? You always only hear of Google, Airbnb or Uber. But there are also companies that are working very successfully one or two steps below this radar. There are some areas where technologically very advanced solutions are being developed in Switzerland. Such as “Over the Top” internet TV.

Does Switzerland not simply make too little of its opportunities? It is not Zurich but London that is the FinTech centre of the world today.
In Switzerland there have certainly been developments in this direction; for example, companies invested early on in e-private banking, and apps from big Swiss banks lead the field today. But a cluster has not formed around this as it has in London. Why is that? To succeed in the FinTech sector, banks have to cannibalize their own business. Under these conditions it is simply difficult to drive innovation forward within your own organization. This is why I argue in favour of cooperative ventures. Twint from Postfinance is a good example of how this can succeed.

With the coalescence of ICT and Life Sciences, the next opportunity presents itself for Switzerland and the Northwest region in particular. What needs to be done to make sure this opportunity is not missed?
Innovation arises through collaboration. Small companies often lack the know-how and the resources for major roll-outs. Established companies on the other hand lack the agility to achieve the best-possible result with few resources. I would therefore suggest approaching such issues more in project networks. It is typically just a few people in the management of large companies who decide whether an idea is good or bad. A completely different approach is taken in Silicon Valley, where there is a sponsor for any given idea. This sponsor gets together with financial investors and technical experts and interacts with them. If the idea goes down well and there is potential for improvement, then it is on the right track. If the comments are constantly negative, then it is probably the wrong way. The upshot is that, in Silicon Valley, it is the competent people with a competent opinion who are the decisive actors, not an individual in management. It is noticeable that this model is slowly coming to be accepted in Switzerland as well.

And yet Switzerland is world champion in innovation?
I would take the assertion that “Switzerland is world champion in innovation” with a very large dose of salt. Such statements just make you feel comfortable. If an innovation is in the process of redefining a market, then it can never be too soon to notice it. As an entrepreneur you have to be positively paranoid in this respect and should be constantly considering whether you are good enough and what could be improved.

It is often said that enterprise is not highly regarded in Switzerland and the willingness to take risks is given too little regard.
I feel this has changed a lot. In fact I see a lot of young people who set about projects with a very strong appetite for risk. Failure today is also no longer so serious. It is also very valuable for personal development if you have established your own company. I see young entrepreneurs today who are much further on than I was at the same age because they have established their own company.

You said at the start that in Switzerland it is mainly private individuals who invest. What could be done to ensure that even more is invested?
It could be encouraged by giving people the possibility to experience this themselves. For example, instead of investing heavily in training and continuing education, large companies could give management staff the opportunity to invest training money also in a start-up. If an MBA costs 20,000 francs, for example, the company could get the manager to pay up 20,000 francs themselves on top in order to support a small company with this capital. I’m convinced the learning effect in terms of reading balance sheets and profit-and-loss accounts or driving projects is at least as great as it is when compiling a case study at a prestigious university. If you can convey this credibly in a job interview, then this experience is just as valuable as a title.

What do you think of tax incentives for companies that create added value?
Basically I always find it positive when incentives are created for people who are prepared to take a risk. If someone takes a big risk, he should also be rewarded for this. Tax incentives are one possible way of doing this.

Interview: Thomas Brenzikofer and Nadine Nikulski, i-net

*Adrian Bult has worked on an honorary basis for i-net as Head of ICT since March 2013. Bult is an acknowledged expert with an in-depth knowledge of Switzerland’s ICT sector. From 1998 to 2007 he was a member of the group management of Swisscom and from 2007 to April 2012 he was COO of Swiss-based bank software vendor Avaloq. Today Adrian Bult is a consultant and investor. He is Chairman of the Board of Directors at Swissgrid and Enkom Group and a member of the Board of Directors at Adnovum, Swissquote, Regent Beleuchtungskörper and Alfred Müller AG.

Adrian Bult (born in 1959) studied business administration and marketing at the University of St. Gallen.

report Invest in Basel region

Accenture Talks Disruption through Artificial Intelligence

05.06.2018

report ICT

Basel startup gains Europe-wide recognition

04.06.2018

report ICT

«If you’re after eight-figure investments, it’s always going to be very tight in Europe»

05.08.2015

With its award-winning Erlenapp, the company known as qipp made both a national and an international name for itself. But with its Allthings platform, success came to the Internet of Things startup in a different market from the one initially in mind. In this interview Stefan Zanetti, founder and CEO of qipp, explains what hurdles the Basel startup had to overcome and ventures a glimpse into the future for qipp.

In the past few months, qipp has reaped a host of startup awards. Does that also do something for the business or are the awards just good for the ego?
Stefan Zanetti*: Of course we wouldn’t have taken part in the competitions if we had not been convinced that they would get us somewhere. There are two considerations here. Firstly, our business idea is pretty abstract. To be successful, we have to package this in a good story. Competitions force us to get to the heart of our own story. Secondly, awards bring not only publicity, but above all also trust. It’s like a third opinion which certifies that we have a promising business idea. The awards have opened doors to investors in particular.

The idea of qipp matured over time. What has changed?
I would put it differently. The basic idea has always been the same: With our Allthings platform, we aim to equip the physical world with digital services. What has changed a lot is the market focus. At first we thought qipp could be interesting above all for producers of high-end goods. Our technology, for example, enables products such as watches, bicycles or kitchen devices to be equipped with digital services so that the producers can deliver their products directly with value-added services. This idea is still what guides us and was also well accepted by producers. Only this is unfortunately a slow-moving market and the sales cycles are much too long for a startup like us, who has to show concrete results very quickly.

So you had the right product, but were on the market too soon?
Yes, the producers we initially had in mind were simply not mature enough for our story. But fortunately another industry got wind of our product: the real estate sector. It was above all the initiative of a partner, namely the general contractor Losinger Marazzi, who wanted to explore new avenues for the Erlenmatt estate. And so we developed the Erlenapp on Allthings. Everyone who moves into an apartment in Erlenmatt is given access to this app, which covers all the services relating to the apartment and the estate: from the apartment documentation, a local social network where users can exchange their views or interfaces for reporting damage to the visualization of energy data. So far, 92 percent of the apartments have downloaded the app and use it on average every other day. These are fantastic values.

So is that now the breakthrough?
Since launching the Erlenapp, we have indeed been bombarded with queries. These come partly from the real estate sector and also from other sectors.

How are you coping with this rush?
At the moment we are working at two levels. Besides the further rollout of real estate apps, we are also working flat out on the publication of our API, which will then also open up the Allthings platform for third-party providers outside the real estate sector.

Can this balancing act work in the long run? Will you not have to decide at some stage: «World Leading Real Estate App» or horizontal platform for Internet of Things applications?
That’s a valid question. The real estate market is actually huge. And it’s not only about the market for apartments; a very attractive option of course is also the office segment, not least in view of new forms of work, such as shared desk and co-working, which are a growing feature of offices. There is huge potential in the real estate sector for micro-applications that can then be offered by third parties via our platform. This shows how crucial the local graph is - whether you want to get rid of the surplus food in your fridge before you go away on vacation or the local pub invites you to a BBQ evening.

So qipp positions itself as a sales and service outlet?
I could well imagine apps comparable with the Erlenapp in future being offered as basic infrastructure by cities, municipalities or districts. But at the same time you have to watch out that you don’t find yourself drifting out too wide, because a lot of things are possible, but not everything really makes sense. So it will be important to get the scalable core to crystallize out even more clearly in the coming months together with our partners.

You have been to Silicon Valley on various occasions. Will qipp have to move to the ICT mecca at some stage? Or to put it differently: can you also live out your ambitions in Basel?
If the success lasts, then the day will come when we have to touch ground in Silicon Valley. But we cannot and don’t want to take this step right now. We are also aware that there are hotspots like London and Berlin, where things are taking off at present and a European startup eco system has emerged. But you can also profit from this if you travel there now and then and actively network. You don’t necessarily have to locate your headquarters there. Conversely, a location like Basel also has advantages. For example, when you see how companies in London and Berlin poach developer talents off each other, then this is not something you necessarily want to get involved in. I can count on people here who above all are convinced of the qipp idea and find it exciting to develop this further. There are also top developers who don‘t desperately want to live in the most hip places in the world.

Is that not rather too defensively minded?
If you’re after big investments running to eight-figure sums, it’s always going to be very tight in Europe and you will also seek your fortune Silicon Valley. But no one there is waiting for a company from Europe and conversely no US venture capitalist invests to any substantial degree outside the US. Establishing a startup in Europe is fundamentally different from establishing a startup in the US. Take Nextdoor. This startup is doing something very similar to us in the US, but the approach is quite different. First it is all about conquering territory. The business model and sales don’t play any role. For as soon as you have the masses on the platform, these things then develop of their own accord. You can’t operate like that in Europe. You have to earn money from the outset. But this only works if you know your market, and the market you know best is where your home is.

So you can finance qipp yourself?
I have already built up two companies that were completely organically financed. To date qipp is also self-financed and could also continue to develop further organically. But the question is whether we would then risk missing out on great potential. For this reason we will hold our first external round of financing in the autumn.

How much capital is needed?
We will conduct an initial round among business angels, friends and employees and only then open up. And we need additional staff in order to meet the current strong growth in demand. But this will then enable us soon to generate new income, which we plan to use for the development of our platform in order to get third-party providers involved.

Interview: Thomas Brenzikofer and Nadine Nikulski, i-net

*Stefan Zanetti is founder and CEO of qipp, the third company that he has founded after synesix (2005) and careware (2006). Within qipp, Zanetti is focusing on business development and key account management. All the companies he has founded are profitable and manage entirely without external financing. They achieve sales of 2 to 6 million francs a year and employ between 8 and 20 people.

Website of qipp

Video about qipp's Erlenapp

report Innovation

Panalpina joins blockchain alliance

24.05.2018

report Invest in Basel region

First of its kind in Switzerland: The Center for Innovative Finance

22.05.2018

report ICT

«Open Data ist auch ein Innovationsimpuls»

05.03.2015

Mit der «Open Government Data Strategie Schweiz» ist der erste Schritt getan. Mehr Offenheit vom Staat wünscht sich Opendata.ch-Mitgründer Hannes Gassert nun auch bei der Beschaffung und findet: «Die grössten Cracks sollten an den grössten Herausforderungen arbeiten – und solche hat der Staat.»

Inwiefern hat das öffentlich zugänglich machen von Daten wirklich etwas mit Innovation zu tun? Geht es nicht primär um Transparenz?
Hannes Gassert: Daten sind der Treibstoff der Wissensgesellschaft. Und die öffentliche Hand hat viele wertvolle, aber nicht personenbezogene Daten. Es ist wichtig, dass diese für alle zugänglich gemacht werden. Doch nicht nur «draussen» bei den Start-ups, KMU und NGO kann dies innovative neue Ansätze möglich machen. Auch verwaltungsintern wirkt Open Data. Wir stellen immer wieder fest, dass Open-Data-Projekte zum Nachdenken zwingen: Welche Daten haben wir überhaupt, woher kommen sie und warum sind sie wertvoll?

Besteht für die öffentliche Hand bezüglich Offenheit der Daten eine Verpflichtung?
Nein. Wichtig ist zuerst einmal, staatlichen Stellen überhaupt die Möglichkeit zu geben, mit der Open Data Community zusammenzuarbeiten, bevor es um Zwänge oder Verpflichtungen geht. Aber natürlich: Die Daten der öffentlichen Hand sollen offene Daten sein und der Öffentlichkeit in geeigneter Form auch zugänglich gemacht werden. Es sei denn, übergeordnete Interessen wie etwa der Persönlichkeitsschutz haben Vorrang. Wohlgemerkt, wir sprechen hier immer von Daten im engeren Sinn, von maschinenlesbaren, nicht personenbezogenen Sammlungen – dazu gehören Karten, Fahrpläne oder Wetterdaten, nicht aber Bundesratsprotokolle und andere Dokumente aus dem Entscheidungsprozess. Die Transparenzfrage stellt sich dort ganz anders. Das Anliegen von Opendata.ch ist es, auf Basis der Daten von Bund, Kantonen und Gemeinden ein faires Innovationsökosystem zu schaffen, indem alle gleich lange Spiesse haben.
Jüngst hat beispielsweise Google bei der SBB nach den Plänen der Bahnhöfe nachgefragt. Damit will Google die Indoor-Navigation ausbauen. Die SBB hat die Daten nicht herausgerückt. Für ein Start-up wäre dies dann auch schon das Ende der Fahnenstange. Google dagegen kann die Bahnhöfe auch selbst erfassen.

Wie macht sich die Schweiz im internationalen Vergleich bezüglich Open Data?
Die Schweiz befindet sich in Europa im hinteren Mittelfeld. Das hat auch mit unserer föderalen Struktur zu tun. Wenn in den USA oder in Grossbritannien ein neuer Präsident oder Premierminister an die Macht kommt, kann er einfach mal proklamieren: «Wir machen jetzt Open Data!» In der Schweiz geht vieles langsamer, dafür sind die Errungenschaften umso stabiler. Derzeit werden gerade eine Reihe von Gesetzgebungen in Bezug auf die Open-Data-Möglichkeiten unter die Lupe genommen. Grundsätzlich geht es aber nicht nur um Gesetze – wichtiger ist der Kulturwandel.

Und der findet allmählich statt?
Ein Anfang ist gemacht. Es gibt nun die «Open Government Data Strategie Schweiz» und ein zuständiges Team innerhalb der Bundesverwaltung. Die Rede ist hier notabene nicht von «Open Data Bund», sondern von «Open Data Schweiz». Will heissen, dass der Bund die Datenplattform betreibt, die dann auch von den Kantonen und Gemeinden für die Offenlegung von Daten genutzt werden kann.

Und warum sollten die Behörden dies tun?
Transparenz schafft Vertrauen. Wer so gut, so genau und korrekt arbeitet wie die Schweizer Behörden, hat viel mehr Chancen als Risiken. Oft wird aber leider davon ausgegangen, dass mehr Transparenz bloss zu mehr Behörden-Bashing führt.

Rankings zu Ärzten oder Spitalleistungen sind aber schon auch problematisch?
Nein, das ist durchaus im Sinne des Bürgers. In Grossbritannien haben solche Rankings zu einer drastischen Reduktion von Spitalinfektionen geführt. Auch für die Schweiz sind entsprechende offene Daten kein Ding der Unmöglichkeit. Wichtig ist, dass wir immer anonymisierte Daten meinen, wenn wir von Open Data sprechen. Von daher sind Ärzteratings oder Lehrerranglisten nicht das Ziel.

Open Data ist ja stark gekoppelt an Open Innovation. Wäre der Staat nicht dafür prädestiniert, über neue Formen der Zusammenarbeit auch neue Ideen zu kreieren?
Sicher, Partizipation und Innovation gehen Hand in Hand. Hackdays, wie wir sie von Opendata.ch organisieren, sind ein Paradebeispiel für Open Innovation und sehr erfolgreich. Indem verschiedene Leute aus allen möglichen Disziplinen zusammenkommen – darunter Designer, Programmierer, Berater, Journalisten oder hoch spezialisierte Fachleute und Forscher –, um während einer kurzen Zeit intensiv an einer Idee zu arbeiten, entstehen viele neue Einsichten, Ideen, Projekte und manchmal gar Produkte. Das ist für alle Beteiligten sehr produktiv.

Dafür braucht es die Offenheit der Behörden, und zwar über das Datenformat hinaus. Wird das auch als Risiko empfunden?
Nun, die IT-Beschaffung des Bundes ist nach diversen Fehlschlägen ja in aller Munde: Das Risiko aber lag dort kaum je in zu viel Innovation oder zu viel Offenheit. Im Gegenteil. Es geht darum, die besten Ideen und die besten Köpfe ins Boot zu holen. Ein gutes Beispiel ist «Obamacare». So hat man die zentrale Plattform, healthcare.gov, zunächst genau so umgesetzt, wie man dies auch hierzulande machen würde. Grosse Spezifikation, viele Berater, klassische IT-Grossdienstleister. Dies führte – wie so oft – zu einem Debakel. Doch jetzt läuft die Sache. Und warum? Weil Obama seine Hacker mit den Kapuzenpullis, die ihn schon im Wahlkampf unterstützt haben, ins Weisse Haus geholt und ihnen volle Unterstützung gegeben hat.

Hat der Staat Angst vor den Geeks?
Aber ja, und nicht nur der Staat. Geeks, wie Sie sie nennen, haben nun mal spezielle Fähigkeiten, und diese wollen sie nicht nur für die Entwicklung von trivialen Games und noch mehr Social-Media-Plattformen einsetzen, sondern auch im Dienste des Gemeinwesens. Der Begriff der Community ist ja nicht umsonst sehr wichtig in diesen Szenen. Bei der öffentlichen Hand gibt es grosse Herausforderungen zu lösen, und dazu sind die Fähigkeiten von Geeks gefragt. In den USA jedenfalls ist zu beobachten, dass die Start-up-Szene sich immer mehr in sogenannte Govware-Projekte involviert. Die Verwaltungs-EDV gilt bei jungen Talenten ja sonst eher als langweilig. Viele halten sich an das durch Leute wie Steve Jobs oder Tim O’Reilly genährte Mantra: Arbeitet an Dingen, die wirklich wichtig sind – «work on stuff that matters!» Und da muss unser Gemeinwesen natürlich weit oben auf der Liste stehen. Wir sollten es hinkriegen, dass die grössten Cracks auch an den grössten Herausforderungen arbeiten.

Sind der öffentlichen Hand nicht die Hände gebunden? So muss man sich ja an die WTO halten.
Um etwas mehr Innovation hineinzubringen, müssen wir nicht die Regeln des Welthandels umkrempeln. Vorschläge dafür gibt es bereits zur Genüge. Ein wichtiger Punkt ist auch hier Transparenz. Dank offengelegten Beschaffungsdaten können disfunktionale Muster erkannt und durchbrochen werden.

Hannes Gassert ist Unternehmer sowie Aktivist und Kurator an der Schnittstelle von Technologie, Medien und Kultur. Er ist im Editorial Board der Lift Conference, Vorstandsmitglied von Opendata.ch und /ch/open, im Verwaltungsrat von Liip sowie Partner bei der Crowdfunding-Plattform wemakeit.com und Mitgründer von skim.com.
Hannes Gassert studierte Informatik und Medienwissenschaften an der Universität Fribourg. Noch während des Studiums gründete er 2003 den Webdienstleister Liip mit, dessen Wachstum er als Geschäftsleitungsmitglied bis 2010 mitprägte.

Interview: swiss made software, geführt von Thomas Brenzikofer
Erschienen in der Publikation «swiss made software – Public Innovation»

report ICT

Crypto community discusses blockchain in Basel

09.05.2018

report ICT

Baloise experiments with artificial intelligence

08.05.2018

report Medtech

Industry 4.0 – what’s the impact on other sectors?

28.01.2015

On January 22, 2015, NZZ published a very interesting set of articles about the silent revolution in industry and production: industry 4.0 is the digital interlinking of production and value chains (see links below).

The revolutionary phases in industrial production were the introduction of the steam engine and water power, which allowed mechanized fabrication (industry 1.0), the invention of the conveyor-belt, which allowed mass production (industry 2.0), and computers and robots, which enabled automated production (industry 3.0). And today, the next industrial revolution is enabling the physical and virtual systems to be merged through the internet of everything (industry 4.0). The results of digital production are the vertical interlinking of intelligent production systems (smart factories) and the horizontal integration of global value chains, including suppliers and customers.

The sensing of everything becomes reality – not only in production, but also in mobility (self-driving car), in health (quantified self), in logistics (real-time tracking) or in finance (high-frequency trading). But this is only the tip of the iceberg. Sensing and listening (in terms of data exchange) will inform every aspect of what we do. But how do we get the essentials from the vast, unstructured data and how can we benefit from this becoming more effective, more sustainable, more innovative, improving safety, reducing risks and finally improving our habits?

Apart of sensors and data storage, we also require smart brains and emulation power, such as lateral thinking, lean management (bad processes remain bad, even if they become smart through the latest technology) and expert systems (smart and self-learning algorithms based on large data sets, which make decisions without human interaction). The future is bright; some potential advantages include the prediction of failure and conflicts (and thus hopefully their prevention), the personalization of products, services and therapies, automatic maintenance, self-organized logistics, the share economy, energy efficiency in all aspects of our life and so on.

The threats and challenges are also enormous: Data privacy, protection against industrial espionage, data security measures, data banking and so on. Sound solutions are required. We have a lot of opportunities in Switzerland from the internet of everything and expert systems, not only in industry, but in all manner of applications for our daily life. Swiss data banking and Swiss secure cloud are two such potential opportunities. Learn about more the opportunities from the i-net Technology Trend Forum and the i-net technology and business related events.

Related NZZ articles:
«Das Internet kommt in die Fabrik»
«Evolution statt Revolution»
«Auf dem Weg in die Arbeitswelt 2.0»

i-net related information:
Article about the i-net Tech Trend Forum
List of i-net Events

report Life Sciences

Novartis app facilitates clinical trials

26.04.2018

report ICT

Blockchain in der Praxis

05.04.2018

report ICT

Torsten Schwede: «Seit 2007 läuft das Datenwachstum in der Wissenschaft der Rechenleistung...

05.11.2014

Genomics, Peronalised Medicine, Molecular Modelling: Informatik und Life Sciences kommen sich immer näher. Dabei gehört die Schweiz, anders als in der Enterprise- und Consumer-IT, zu den führenden Wissensstandorten der Computational Life Sciences.
Dennoch rechnet Torsten Schwede nicht mit einer überbordenden Bioinformatik-Startup-Welle. Warum, erklärt der Professor für Struktur- Bioinformatik am Biozentrum der Universität Basel und Mitglied des Vorstands des SIB Schweizerischen Institut für Bioinformatik im Interview mit i-net.

Zunächst ganz konkret, was alles subsumiert sich unter dem Begriff Bioinformatik?
Torsten Schwede*: Ich verwende den Begriff Bioinformatik nur noch selten. Wir sprechen meistens von «Computational Life Sciences» oder «Computational Biology». Bioinformatik hat zwar einmal mit der Organisation von Sequenzdaten und Sequenzanalyse begonnen, aber eine enge Definition macht eigentlichen keinen Sinn mehr - dafür ist der Bereich zu interdisziplinär geworden. Heute haben fast alle Bereiche der Life Sciences einen «computational» Ableger, und die Themen reichen von Molecular Modelling, über Big Data und Systembiologie, Clinical Bioinformatics bis hin zu Anwendungen im Bereich der personalisierten Medizin. Am SIB Schweizer Institut für Bioinformatik ist eigentlich jede Arbeitsgruppe willkommen, die computergestützte Methoden zur Anwendung in den Life Sciences entwickelt.

Was unterscheidet einen Bioinformatiker von einem Informatiker?
Etwas überspitzt formuliert, bei uns treibt die wissenschaftliche Fragestellung im Gebiet der Lebenswissenschaft die Methodik. Wenn ich eine Frage mit dem einfachsten Algorithmus beantworten kann, dann bin ich glücklich und kümmere mich nicht mehr weiter um die Informatik, sondern um die Fragestellung. In den Computerwissenschaften sind Innovationen in Algorithmen und Technik Ziel der Forschung, und oft finden sich im Nachhinein Anwendungen in verschiedensten Arbeitsbereichen.

Ein Bioinformatiker ist also eher ein Biologe?
Ja, das kann man so sehen, und an der Universität Basel ist die Bioinformatik auch ein Teil des Biozentrums. Früher hatten die meisten Bioinformatiker einen naturwissenschaftlichen Hintergrund wie Physik, Biologie oder Chemie. Vor ein paar Jahren haben wir an der Universität Basel einen Bacherlorstudiengang in Computational Sciences eingeführt. Diese Ausbildung wurde durch eine Zusammenarbeit von Mathematik, Informatik, Physik, Chemie und Biologie entwickelt und bietet ein breites Grundlagenstudium, wobei im zweiten Jahr eine Spezialisierung auf eine der Hauptrichtungen erfolgt. Ziel ist, dass Bachelor-Absolventen dann immer noch die Wahl haben zwischen einem Master in Informatik oder in der gewählten naturwissenschaftlichen Vertiefung Biologie, Chemie, Numerik oder Physik. Wichtig aber ist, dass der Bioinformatiker etwas von beiden Welten kennt.

Das klingt sehr anspruchsvoll – sind das nicht sozusagen zwei Studiengänge in einem?
Der Brückenschlag ist in der Tat äusserst anspruchsvoll und die Absolventen dieses Studiengangs sind absolute Spitze.

Das heisst wohl auch, Sie werden nicht gerade von den Studenten überrannt?
Es gibt ganz klar einen «War for Talents». Gute Studenten können sich heute aussuchen, wo auf der Welt sie studieren wollen. Auf PhD-Ebene rekrutieren wir denn auch international. Die Schweiz und Basel haben dabei weltweit eine sehr gute Ausstrahlung, und in der Bioinformatik gehört die Schweiz zu den drei top Destinationen weltweit. Global gesehen hat die Schweiz die höchste Dichte von Bioinformatikern.

Dennoch haben wir das Problem, dass es in den sogenannten Mintfächern an Nachwuchs fehlt?
Man müsste in der Schule ansetzen: Die wenigsten Maturanden haben eine klare Vorstellung, was ein Wissenschaftler im Alltag so macht und was genau hinter der Informatik steckt. Das Bild vom Biologen, der auf der Wiese sitzt und den Kaninchen beim hoppeln zusieht, trifft einfach nicht zu und muss sich ändern. Zudem sollte man auch vermitteln, dass Naturwissenschaftler gesuchte Leute sind. Soweit ich weiss, haben wir bisher noch keine arbeitslosen Bioinformatiker produziert.

Viele Bioinformatiker arbeiten in der Westschweiz – warum?
Das SIB Schweizerische Institut für Bioinformatik wurde ursprünglich in Genf gegründet, und Swiss-Prot, die weltweit grösste Wissens-Datenbank im Life Sciences-Bereich, hat ihren Sitz in Genf und Lausanne. Diese Datenbank wird vom Bund und von den US National Institutes of Health (NIH) unterstützt und ist für Wissenschaftler der ganzen Welt die Referenzdatenbank für Proteine. Swiss-Prot ist auch der Grund, dass 1998 das SIB gegründet wurde als der Schweizerische Nationalfonds beschloss, die Pflege von Datenbanken nicht mehr zu unterstützen. Daraufhin erhielten wir tausende von Zuschriften aus der ganzen Welt, die sich dafür einsetzten, dass Swiss-Prot bestehen bleibt - auch grosse Pharmafirmen boten Geld an. Durch die Gründung des SIB wurde dafür gesorgt, dass die Datenbank öffentlich blieb. Heute sind mehr als 50 wissenschaftliche Arbeitsgruppen aus der gesamten Schweiz Mitglied im SIB, und über 600 Wissenschaftler arbeiten an Schweizer Universitäten und ETHs im Bereich der Bioinformatik.

Die Datenberge in den Life Sciences steigen exponentiell an, was ist der Auslöser?
Die Anforderungen an die IT Infrastruktur sind praktisch in sämtlichen Gebieten der Life Sciences massiv angestiegen. So haben zum Beispiel unsere Kollegen am Biozentrum jüngst ein neues Mikroskop gekauft – dieses kann pro Tag zwei Terabyte Daten erzeugen. Wir sehen ähnliche Entwicklungen im Bereich der Genomics und anderer Hochdurchsatzverfahren. Moore’s Law besagt, dass sich die Rechenleistung der Prozessoren alle 18 Monate verdoppelt. Seit ungefähr 2007 reicht dies nicht mehr aus, um mit der Datenproduktion in der Wissenschaft Schritt halten - das Datenwachstum in der Lebenswissenschaft läuft der Rechenleistung davon. Deshalb brauchen wir neben einem Ausbau der IT Infrastrukturen auch schlauere Konzepte und Algorithmen. Und genau da kommen die Bioinformatiker ins Spiel, von der Planung der Experimente über die Analyse der Daten bis zur Modellierung der Systeme basierend auf den Ergebnissen.

Das heisst auch, hier gibt es ein grosses Feld für Innovationen. Warum gibt es dann nicht mehr Bioinformatik-Startups?
Unsere Studenten beschäftigen sich hauptsächlich mit wissenschaftlichen Problemen und möchten auf dieser Ebene ihren Beitrag leisten. Und wenn unsere Studenten Startup-Ideen haben, dann liegen diese häufiger im wissenschaftlichen Bereich und weniger in der Informatik, also etwa in der Molekularbiologie oder in medizinischen Anwendungen.

Wird es irgendwann einen Hersteller einer Bioinformatik-Standardsoftware geben?
Ich sehe momentan keine Anzeichen für eine kommerzielle «Standardsoftware» für Bioinformatik - in vielen Fällen sind wir noch weit von «Standard Workflows» in der Interpretation der Daten entfernt. Die experimentellen Technologien entwickeln sich sehr schnell, und die Entwicklung neuer Methoden und Algorithmen ist ein spannendes Forschungsgebiet. Ich glaube, wir werden auch in Zukunft ein Biotop verschiedener Lösungen und Tools einsetzten. Die wichtigsten Programme in der Bioinformatik sind heute Open Source. In meinem eigenen Arbeitsgebiet sind die akademisch entwickelten Software Tools innovativer und leistungsfähiger als kommerzielle Lösungen. Wichtig sind dabei Standards, die einen reibungslosen Datenaustausch ermöglichen.

Bioinformatik lässt sich also gar nicht kommerzialisieren?
Doch, aber in den meisten Fällen kommt der «added value» in unserem Bereich eher aus Knowhow und Services als dem Verkauf von Software. Es gibt eine ganze Reihe erfolgreicher kommerzieller Anwendungen, wie zum Beispiel der erste nicht-invasive pränatale Test für verschiedene Trisomien in der Schweiz, für den die Bioinformatik von unseren Kollegen am SIB Lausanne entwickelt wurde. Und mit Genedata haben ja eines der erfolgreichsten Bioinformatik Unternehmen direkt vor Ort hier in Basel.

Könnte das Potenzial nicht grösser sein?
Ich denke es gibt ein sehr grosses Potential in diesem Bereich und der Markt entwickelt sich schnell. Aber gerade bei den daten-getriebenen Projekten - etwa im Umfeld von personalised health - spielt die Regulierung keine unwesentliche Rolle. In Ländern wie der Schweiz mit etablierten rechtlichen Strukturen ist der Einstieg für neue innovative Lösungen oft nicht ganz so einfach. In sogenannten «Emerging Markets» dagegen sind die Eintrittshürden sehr viel geringer, und wir sehen in diesen Ländern eine regelrechte Goldgräberstimmung. Es bleibt abzuwarten, welche dieser Ideen sich am Ende als echte Innovationen im Gesundheitsmarkt durchsetzen werden.

Interview: Thomas Brenzikofer und Nadine Nikulski, i-net

*Torsten Schwede ist Professor für «Structural Bioinformatics» am Biozentrum der Universität Basel und Mitglied des Vorstands am SIB Swiss Institute of Bioinformatics. Als Leiter von «sciCORE» ist er für die Organisation der wissenschaftlichen IT Infrastruktur an der Universität Basel verantwortlich.

 

report ICT

Talk to a doctor via new Medgate app

04.04.2018

report Precision Medicine

Clinerion appoints new CEO

29.03.2018

report ICT

«Geld allein bringt uns nicht weiter – man muss vor allem die richtigen Leute finden»

24.09.2014

Nach Obtree (heute Open Text) und Day Software (heute Adobe) führt Magnolia die Web Content Management-Tradition am ICT-Standort Basel fort. Mit 70 Mitarbeitenden und Kunden in aller Welt holen die Gründer Boris Kraft und Pascal Mangold inzwischen zu den nächsten Expansionschritten aus. In welche Richtung diese führen, verrät Chief Visionary Officer, Boris Kraft, im Interview mit i-net.

Versteht sich Magnolia eigentlich noch als Startup?
Boris Kraft*: Das ist eine interessante Frage und ich habe sie mir in letzter Zeit auch oft gestellt. Für mich persönlich hat ein Startup viel damit zu tun, rauszukriegen, was man selbst machen will und was der Kunde möchte, um dann den Bereich zu finden, in welchem das Unternehmen funktionieren kann. Hierfür braucht man ein paar Jahre und eine gewisse kritische Grösse. In der Schweiz liegt diese Grenze etwa bei zehn bis fünfzehn Mitarbeitenden. In den USA ist das natürlich anders. Dort kriegt man Millionen-Investments, die man erst mal verbrennen darf. Deshalb gelten in den USA Jungfirmen mit 100 Mitarbeitenden durchaus noch als Startups.

Magnolia ist also kein Startup mehr?
So gesehen nicht. Wir sind 70 Mitarbeitende in Basel, den USA, China, Spanien, Tschechien und Vietnam. Wir verbrennen auch kein Investorengeld, sondern finanzieren uns aus dem Cashflow. Trotzdem möchte wir möglichst viel von der Startup-Kultur beibehalten. Wir ziehen nächstes Jahr in den Dreispitz, wo rund um die Fachhochschule für Kunst und Gestaltung Basels Kreativ-Cluster am Entstehen ist. Hiervon und zusammen mit einer komplett neu nach unseren Bedürfnissen ausgebauten Location versprechen wir uns einige Impulse. Nichtsdestotrotz hat sich Magnolia natürlich auch verändert. Inzwischen haben wir eine zweite Führungsebene eingeführt. Pascal Mangold und ich sind als Gründer immer weniger im Tagesgeschäft involviert und können uns auf die strategische Entwicklung des Unternehmens fokussieren.

Und wo soll die Reise mit Magnolia hingehen?
Bildlich gesprochen haben wir in den letzten zehn Jahren die Geleise gelegt, die Loks und die Wagen gebaut, ein paar Bahnhöfe hingestellt und den Fahrplan bestimmt. Nun können wir mit der Eisenbahn richtig losfahren. Dabei entdeckt man viel Neues. Wir können den Betrieb optimieren, das Angebot erweitern oder auch völlig neue Wege gehen.

Was bedeutet dies in Umsatzfranken?
Wir haben uns keine quantitativen Ziele gesetzt. Bislang haben wir Umsatz und Mitarbeitende alle zwei bis zweieinhalb Jahre verdoppelt, und wir werden sicher weiter wachsen, wenn auch nicht mehr ganz in diesem Tempo. Unser Markt wächst um rund 10 Prozent pro Jahr. Heute haben wir 200 Kunden. Diese Basis würden wir gerne verzehnfachen. Ziel ist es, einen grösseren Footprint in den Markt zu bekommen. Hierfür müssen wir die Komplexität unseres Produktes reduzieren. Um kundenspezifische Anwendungen zu machen, muss man unsere Software sehr gut kennen. In Zukunft sollte auch ein Webentwickler mit geringen Java-Kenntnissen mit Magnolia komplexe Websites bauen können.

Könnte Magnolia mit Venture Capital nicht noch schneller wachsen?
Das könnten wir sicher, vor allem in den USA oder in für uns neuen Märkten wie Brasilien; oder auch im Mittleren Osten. Nur: Geld allein bringt nicht all zu viel. Man muss vor allem die richtigen Leute finden. Und das funktioniert bei uns derzeit auch ohne Investor sehr gut.

Das heisst bei Magnolia herrscht kein IT-Fachkräftemangel?
Wir haben einen guten Namen als Arbeitgeber. Unsere Mitarbeitenden sind sehr international. Das ist wichtig, weil wir global agieren. Die Leute kommen gerne nach Basel um zu arbeiten. Und es hilft, dass es hier aufgrund der Pharmaindustrie viele Expats gibt. Unser Marketingchef z.B. ist mitsamt Familie aus Austin, Texas nach Basel übersiedelt und fühlt sich wohl hier, weil er schnell Anschluss gefunden hat an die englischsprachige Community.

Ansonsten hinkt der ICT-Standort Basel sicher Zürich und der Westschweiz hinterher?
Ich sehe grosse Chancen für den ICT-Standort Basel. Doch um diese zu nutzen, braucht es auch den politischen Willen. Man müsste trinational denken und insbesondere in die Hochschulausbildung im Bereich ICT investieren. Der Nachwuchs ist heute entscheidend. Wenn jemand nach Zürich gehen muss für die Ausbildung, dann kommt er danach nicht wieder nach Basel. Er bleibt in Zürich. Daher ist die Chance eher gering, in Basel als Startup Fahrt aufzunehmen. Dass wir als Magnolia hier in Basel so weit gekommen sind, ist letztlich wohl eher Zufall.

Damit ist Basel nicht allein. Warum tut sich Europa eigentlich so schwer, ein eigenes ICT-Ökosystem aufzuziehen?
Es fehlt der Exit-Markt. Jeder US-Investor, der signifikant in ein Europäisches ICT-Startup investiert, wird dieses früher oder später dazu drängen, ins Silicon Valley umzuziehen. Denn dort sind seine Käufer.

Ist nicht auch Magnolia irgendwann ein Verkaufskandidat?
Man lebt nur einmal. Deshalb kann ich auch nicht behaupten, wir würden nie verkaufen. Vielleicht kommt einmal ein Angebot, das so gut ist, dass wir es nicht ausschlagen können. Von daher bleibt ein Verkauf immer eine Option. Aber es ist sicher nicht unser erklärtes Ziel.

Derzeit richten Sie Ihr Blick stark nach Asien, warum?
Stimmt, Magnolia gibt es inzwischen auch in Chinesisch und wir sind mit einem Büro in Peking präsent. Unser Fokus liegt zunächst auf westlichen Unternehmen, die in China tätig sind. Das Web wird in China noch anders genutzt als hier. Vertrauen in Marken und Produkte wird über Social Media und nicht über Webseiten gebildet. Aber das wird sich ändern und wir möchten von Anfang an dabei sein, auch weil Magnolia im Bereich E-Commerce sehr stark ist, und dies auch in China ein massiver Wachstumsmarkt ist.

Und was tun Sie in Vietnam?
Wir sind dabei in Saigon ein Dienstleistungszentrum aufzubauen. Wir haben gemerkt, dass es bei vielen unserer Kunden an Fachkräften fehlt, um die Projekte voranzutreiben. Deshalb bilden wir in Vietnam Spezialisten aus; diese werden unseren Kunden sowie Magnolia-Partnern zur Verfügung gestellt, um Engpässe

Offshoring ist also auch bei Magnolia ein Thema?
Als Entwicklungsstandort und -zentrale ist und bleibt Basel unbestritten. Aber als Softwareunternehmen muss man global agieren und die Ressourcen dort rekrutieren, wo sie vorhanden sind. Es geht dabei weniger darum, günstige Arbeitskräfte zu vermitteln, sondern den Projektstau zu lösen, der sich bei unseren Kunden aufgrund fehlender Fachkräfte immer wieder bildet. Davon versprechen wir uns einen grossen Wachstumsimpuls in unserem primären Geschäft, dem Verkauf von Software-Lizenzen.

Interview: Thomas Brenzikofer und Nadine Nikulski, i-net

*Boris Kraft ist Chief Visionary Officer (CVO) und Mitbegründer von Magnolia. Seit 2003 befasst er sich mit der Entwicklung von Content Management Systems Magnolia CMS und betrachtet diese von einem strategischen und marketingtechnischen Standpunkt aus. Zu den Stationen seiner IT-Karriere zählen die objektorientierte Softwareentwicklung für NeXTSTEP, eine mehrjährige aktive Beteiligung an einem führenden Unternehmen für Internetsicherheit sowie die Programmierung der ersten Intranet-Lösung für die Roche Vitamins AG. Kraft ist verheiratet und Vater von drei Kindern. Er verbringt seine Freizeit im Sommer am liebsten beim Segeln auf dem Vierwaldstättersee und im Winter auf den Ski in den Alpen.

report ICT

swiss made software: Mehr als 500 Mitglieder zum 10. Jubiläum

22.03.2018

report ICT

Fibre optic network boosts Basel’s appeal

19.03.2018

Cookies

BaselArea.swiss uses cookies to ensure you get the best service on our website.
By continuing to browse the site, you are agreeing to the use of cookies.

Ok